Version 1.0: 0110

General Certificate of Education

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation						
or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
−x EE	deduct x marks for each error	G	graph				
NMS	no method shown	С	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B

Q	Solution	Marks	Total	Comments
1	$H_0: \mu = 45$			
	$H_1: \mu > 45$	B1		
	•			
	$z = \frac{45.8 - 45}{\sqrt{4.8/30}} = \frac{0.8}{0.4} = 2.0$	M1A1		AWRT
	$z_{\rm crit} = 2.3263$	B1		$t_{29} = 2.462$
	Do not reject H ₀			
	Insufficient evidence at 1% level of			
	significance to support Roger's claim.	E1	5	
	Total		5	
2(a)(i)	$E(T) = \frac{1}{2}(25 + -5) = 10$	B1	1	CAO
(ii)	$Var(T) = \frac{1}{12}(255)^{2}$ = 75	B1	1	CAO
(b)	= 75 P $\left(-2 < T < 2\right) = \frac{2}{15}$ (OE)	B1		Diagram (optional)
	P(magnitude at least 2 minutes)			0 63
	$=1 - P(-2 < T < 2)$ $=1 - \frac{4}{30}$	M1		-0.05 × × × × × × × × × × × × × × × × × × ×
	$= \frac{13}{15} (OE) = 0.867$	A1	3	CAO (AWRT)
	or $\frac{3}{100}$ $\frac{23}{0.03}$ $\frac{1}{0.02}$ $\frac{1}{0.01}$ $\frac{1}{0.02}$ $\frac{1}{0.01}$ $\frac{1}{0.02}$ $\frac{1}{0.01}$			Alternative $P(T > 2) = \frac{23}{30} (0.766)$ or $P(T < -2) = \frac{1}{10}$
	or $\int_{-5}^{-2} \frac{1}{30} dt + \int_{2}^{25} \frac{1}{30} dt = \frac{1}{10} + \frac{23}{30} = \frac{13}{15}$			P(magnitude at least 2 minutes) = P($T < -2$) + P($T > 2$) = $\frac{13}{15}$ for M1A1
	or $1 - \int_{-2}^{2} \frac{1}{30} dt = 1 - \left[\frac{t}{30} \right]_{-2}^{2}$ $= 1 - \frac{4}{30} = \frac{26}{30} = \frac{13}{15}$			
	Total		5	
L	= 0 0 0 0	l		I

Q	Solution	Mark	Total	Comments
3	Assume that lengths of shots are normally distributed	B1		$\begin{cases} s_n^2 = 124; \ s_n = 11.1 \\ \text{iff } \frac{s_n}{3} \text{ used} \end{cases}$
	$\overline{x} = 184$ $s^2 = \frac{1240}{9} = 137.7 (s = 11.7)$	B1		CAO $ \begin{cases} AWFW & 137.7 \text{ to } 138 \\ \text{both } \overline{x} & \text{and } s^2(\text{or } s) \end{cases} $
	$H_0: \mu = 190$ $H_1: \mu \neq 190$	B1		Both
	$t = \frac{184 - 190}{\sqrt{\frac{1240}{9} \times 10}}$	M1		$t = \frac{\text{their } \overline{x} - 190}{\frac{\text{their } s_{n-1}}{\sqrt{10}}}$
				or $\frac{\text{their } \overline{x} - 190}{\frac{\text{their } s_n}{\sqrt{9}}}$
	t = -1.62	A1		AWRT
	$v = 9$ \Rightarrow $t_{\text{crit}} = \pm 2.821$	B1		(accept 2.82)
	$-2.821 < -1.62 < 2.821$ accept H_0			
	Evidence to support Lorraine's belief at 2% level of significance	E1	7	
	Total		7	

MS2B (cont)	<u>' </u>						1		1
Q			Sol	ution			Mark	Total	Comments
4(a)	H ₀ : no	associ	ation be	tween	age and	l			
	first time performance in driving test								
	1115				W11 / 1112	5 0000	B1		
	H ₁ : asso	ociatio	n betwe	en age	and		Di		
	•								
	Hrs	t time j	perform	ance in	ariving	g test			
		P	ass	F	ail				
	Age	0	E	0	Е	Total			
	17-18	28	19.2	20	28.8	48			
	19-30	2	6.4	14	9.6	16	M1		E's attempted
	31-39	12	18.0	33	27.0	45	A1		Correctly
	40-60	6	4.4	5	6.6	11			
	Total	48	48	72	72	120			
						- (
	0)	E	2	(O-E	$\left(\frac{E}{E}\right)^{2}$			
	28	3	19.	20	4.0				
	2			40		250			
	18		22.		0.8		M1		Attempt at combining
	20)	28.	80		889	A1		Correctly
	14	1	9.	6	2.0	167			Final column attempted
	38	3	33.6	5	0.5	762	m1		
					13.20)	A1		For X^2 correct
			2 (-\ -					(2 1)
	v = 2	\Rightarrow	χ^2	2) = 9.	.210		B1ft		(on $v = 2$ or $v = 3$ only)
							Din		
	ъ.	**							
	Reject	0			_	_			
	Eviden					f	E1ft	9	
	at 1% 1	evel o	t signit	icance	.				
	M	، ال <i>ـ</i> ،	 1.		. d 3 - 4	L			Former than anneated 6-11
(b)	More students than expected in the age group17-18 pass their test first time.						E1	1	Fewer than expected fail
	groupt	/-10 J	iass the	ii test	1118t U	Total	El	1 10	
						1 Otal		10	

Q	Solution	Mark	Total	Comments
5(a)	X = no. with blood disorder			Alternative:
	G., V. D(25.0.7)			$X \sim B(25,0.7)$ $P(X > 15) = 1 - P(X \le 15)$
	for $X \sim B(25,0.7)$			=1-0.18943
	$P(X > 15) = P(X \ge 16)$			= 0.81057
	Consider $X' \sim B(25,0.3)$ then:			
	$P(X \ge 16) = P(X' \le 9)$	B3,2,1	3	$\mathbf{B3} \ 0.81 \le p \le 0.811$
	= 0.8106	23,2,1		B2 for $0.902 \le p \le 0.9022$
				B1 for $0.5 \le p \le 0.95$
5(b)(i)	$X \sim P_0(2.6)$			
	$X \sim P_0 (2.6)$ $P(X \le 5) = 0.951$	B1	1	AWRT
(ii)	$Y \sim P_0 (4.9)$	B1		$\lambda = 4.9$ stated or used in poisson expression
	$P(Y=10) = \frac{e^{-4.9} \times (4.9)^{10}}{10!}$			expression
	$P(T=10) = \frac{10!}{10!}$	M1		
	= 0.0164	A1	3	AWFW 0.016 to 0.0165
(iii)	$T \sim P_0 (7.5)$	B1ft		2.6 + (their mean in (ii))
	$P(T>16) = 1 - P(T \le 16)$	M1		(for 0.9980)
	=1-0.9980			
	= 0.002	A1	3 10	CAO (0.00196)
	Total		10	

Q	Solution	Mark	Total	Comments
6(a)(i)	$a = \frac{25}{63}$ (OE)	B1	1	$\left(\frac{100}{252} \text{ or } \frac{50}{126} \text{ or } 0.397\right)$
(ii)	E(X) = 2.5 (symmetry)	B1	1	
(iii)	$E(X^{2}) = \left(1 \times \frac{25}{252}\right) + \left(4 \times \frac{25}{63}\right) + \left(9 \times \frac{25}{63}\right) + \left(16 \times \frac{25}{252}\right) + \left(25 \times \frac{1}{252}\right)$	M1		$\sum x^2 \times p$ attempted
	$\mathrm{E}\left(X^{2}\right) = \frac{125}{18}$	A1		$\left(6\frac{17}{18} \text{ or } 6.94\right)$
	$Var(X) = \frac{125}{18} - \frac{25}{4}$	m1		$ \begin{cases} \left[\text{their E}(X^2) - \left(\text{their E}(X) \right)^2 \right] \\ \text{dep } \sum x^2 \times p \text{ used} \end{cases} $
	$=\frac{25}{36}$	A1		0.694 [Var > 0]
	$\operatorname{sd}(X) = \frac{5}{6}$	A1ft	5	$0.83\dot{3} \left(\sqrt{\text{their Var}(X)}\right)$ (dep m1)
(b)(i)	$E(Pay) = \frac{4}{9} \times 90 \text{ pence}$ $= 40 \text{ pence}$ $\Rightarrow \text{Joanne expected to make a loss}$	M1		Alternative: $\frac{5}{9} > \frac{2}{9} + \frac{2}{9} \implies loss (for B1)$ then M1A1
(ii)	(loss of 10p per game) $E(Loss) = 100 \times 10 \text{ pence}$ $= £10$	A1 B1ft	3	100×(their loss/game)
	Total		10	

Q	Solution	Mark	Total	Comments
7(a)(i)	$d^2 = \frac{93}{12} = 7.75$	M1 A1	2	$d = \sqrt{\frac{93}{12}} = \sqrt{7.75}$ $\Rightarrow d^2 = 7.75$
(ii)	80% CI: $= 64.8 \pm 1.363 \times \sqrt{7.75}$	B1		$t_{11} = 1.363$ or 1.36
	$= 64.8 \pm 3.79$	M1		$64.8 \pm t_{11} \sqrt{7.75}$ iff $t_{11} = 1.363$ or 1.796
	=(61.0,68.6)	A1	3	AWRT
(b)(i)	(64.8 – 5, 64.8 + 5)			
	=(59.8,69.8)	B1	1	AWRT
(ii)	$w = 2\sqrt{7.75} \times t = 10$	M1		
	$\Rightarrow t = 1.796$	A1		t = 1.79 to 1.80
	$P(X \ge 1.796) = 0.05$	M1		iff $t = 1.796$ correct
	$P(X \le -1.796) = 0.05$			
	\Rightarrow P($ X \le 1.796$) = 0.90			
	90% Confidence Level	A1	4	
	Total		10	

Q	Solution	Mark	Total	Comments
8(a)	2 Tf(x)			
	15			B1 for axes
	1			B1 for curve from (0, 0.5) to (1, 1)
	0.5	В3	3	B1 for curve from (1, 1) to (2, 0)
(b)	1	D 3	3	B1 101 carve from (1, 1) to (2, 0)
	$P(X \le 1) = \int_{0}^{1} \frac{1}{2} (x^{2} + 1) dx$	M1		
	$= \left[\frac{x^3}{6} + \frac{x}{2}\right]_0^1$	A1		
	$= \left[\frac{1}{6} + \frac{1}{2}\right] = \frac{2}{3}$	A1	3	0.667
(c)	$E(X^{2}) = \int_{0}^{1} x^{2} \times \frac{1}{2} (x^{2} + 1) dx$			
	$+\int_{1}^{2}x^{2}(x-2)^{2}dx$	M1		both integrals seen
	1			
	$= \left[\frac{x^5}{10} + \frac{x^3}{6} \right]_{x=0}^{x=1} + \left[\frac{x^5}{5} - x^4 + \frac{4x^3}{3} \right]_{x=1}^{x=2}$	A1A1		
	$= \left(\frac{1}{10} + \frac{1}{6}\right) + \left(\left[\frac{32}{5} - 16 + \frac{32}{3}\right] - \left[\frac{1}{5} - 1 + \frac{4}{3}\right]\right)$	m1		dep(M1)
	$=\frac{4}{5}$	A1	5	AG
(d)(i)	$E(X) = \frac{19}{24} \text{ and } k\text{Var}(X) = 499$ $\text{Var}(X) = E(X^2) - E^2(X)$			
	$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \operatorname{E}^{2}(X)$			
	$=\frac{4}{5}-\left(\frac{19}{24}\right)^2$	M1		
	$=\frac{499}{2880} (0.173)$	A1		
	$\Rightarrow k = 2880$	A1	3	CAO

Q	Solution	Mark	Total	Comments
8(d)(ii)	$\mathrm{E}\left(5X^{2}+24X-3\right)$			
	$=5E(X^2)+24E(X)-3$	M1		
	$=5 \times \frac{4}{5} + 24 \times \frac{19}{24} - 3$			
	= 20	A1	2	CAO
(iii)	Var(12X - 5) = 144Var(X)	M1		
	$=144 \times \frac{499}{2880}$			
	$=\frac{499}{20} \text{ or } (24.95)$	A1	2	CAO (AWFW 24.9 to 25)
	Total		18	
	TOTAL		75	