4727 Further Pure Mathematics 3

1 (a) (i) e.g. $ap \neq pa \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) <i>e</i> , <i>a</i> , <i>b</i>	B1 1	For correct elements
(b) c^3 has order 2	B1	For correct order
c^4 has order 3	B1	For correct order
c^5 has order 6	B1 3	For correct order
	6	
2 $m^2 - 8m + 16 = 0$	M1	For stating and attempting to solve auxiliary eqn
$\Rightarrow m = 4$	A1	For correct solution
\Rightarrow CF $(y =) (A + Bx)e^{4x}$	A1	For CF of correct form. f.t. from m
For PI try $y = px + q$	M1	For using linear expression for PI
$\Rightarrow -8p + 16(px + q) = 4x$		
$\implies p = \frac{1}{4} q = \frac{1}{8}$	A1 A1	For correct coefficients
\Rightarrow GS $y = (A + Bx)e^{4x} + \frac{1}{4}x + \frac{1}{8}$	B1√ 7	For $GS = CF + PI$. Requires $y = 1$. f.t. from CF and PI with
		2 arbitrary constants in CF and none in PI
	7	
3 (i) line segment <i>OA</i>	B1	For stating line through O OR A
	B1 2	For correct description AEF
(ii) $(\mathbf{r}-\mathbf{a}) \times (\mathbf{r}-\mathbf{b}) = \overrightarrow{AP} \times \overrightarrow{BP}$	B1	For identifying $\mathbf{r} - \mathbf{a}$ with \overrightarrow{AP} and $\mathbf{r} - \mathbf{b}$ with \overrightarrow{BP} Allow direction errors
$= AP BP \sin\pi$. $\hat{\mathbf{n}}=0$	B1 2	For using \times of 2 parallel vectors = 0
		$OR \sin \pi = 0 \text{ or } \sin 0 = 0$
	B1	in an appropriate vector expression For stating line
(iii) line through O	B1	For stating through O
parallel to <i>AB</i>	B1 3	For stating correct direction
		SR For \overrightarrow{AB} or \overrightarrow{BA} allow B1 B0 B1
	7	
4 $(C+iS =) \int_{0}^{\frac{1}{2}\pi} e^{2x} (\cos 3x + i \sin 3x) (dx)$		
$\cos 3x + i \sin 3x = e^{3ix}$	B1	For using de Moivre, seen or implied
$\int_0^{\frac{1}{2}\pi} e^{(2+3i)x} (dx) = \frac{1}{2+3i} \left[e^{(2+3i)x} \right]_0^{\frac{1}{2}\pi}$	M1* A1	For writing as a single integral in exp form For correct integration (ignore limits)
$=\frac{2-3i}{4+9}\left(e^{(2+3i)\frac{1}{2}\pi}-e^{0}\right)=\frac{2-3i}{13}\left(-ie^{\pi}-1\right)$	A1	For substituting limits correctly (unsimplified)
	M1 (dep*)	(may be earned at any stage) For multiplying by complex conjugate of 2+3i
$= \left\{ \frac{1}{13} \left(-2 - 3e^{\pi} + i(3 - 2e^{\pi}) \right) \right\}$	M1 (dep*)	For equating real and/or imaginary parts
$C = -\frac{1}{13} \left(2 + 3\mathrm{e}^{\pi} \right)$	A1	For correct expression AG
$S = \frac{1}{13} \left(3 - 2 \mathrm{e}^{\pi} \right)$	A1	For correct expression
	8	

4727

Mark Scheme

January 2008

	<u> </u>	1
5 (i) IF $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ $OR x \frac{dy}{dx} + y = x \sin 2x$	M1	For correct process for finding integrating factor OR for multiplying equation through by x
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\sin 2x$	A1	For writing DE in this form (may be implied)
$\Rightarrow xy = \int x \sin 2x (\mathrm{d}x)$	M1	For integration by parts the correct way round
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{2}\int \cos 2x(dx)$	A1	For 1st term correct
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \ (+c)$	M1	For their 1st term and attempt at integration of $\frac{\cos kx}{\sin kx}$
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{c}{x}$	A1 6	For correct expression for <i>y</i>
(ii) $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right) \Longrightarrow \frac{2}{\pi} = \frac{1}{\pi} + \frac{4c}{\pi} \Longrightarrow c = \frac{1}{4}$	M1	For substituting $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right)$ in solution
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{1}{4x}$	A1 2	For correct solution. Requires $y = $.
(iii) $(y \approx) -\frac{1}{2}\cos 2x$	B1√ 1	For correct function AEF f.t. from (ii)
	9	
6 (i)		<i>Either coordinates or vectors may be used</i> Methods 1 and 2 may be combined, for a maximum of 5 marks
METHOD 1		
State $B = (-1, -7, 2) + t(1, 2, -2)$	M1	For using vector normal to plane
On plane $\Rightarrow (-1+t) + 2(-7+2t) - 2(2-2t) = -1$	M1 M1	For substituting parametric form into plane For solving a linear equation in t
$\Rightarrow t = 2 \Rightarrow B = (1, -3, -2)$	A1	For correct coordinates
$AB = \sqrt{2^2 + 4^2 + 4^2} OR 2\sqrt{1^2 + 2^2 + 2^2} = 6$ METHOD 2	A1 5	For correct length of <i>AB</i>
$AB = \left \frac{-1 - 14 - 4 + 1}{\sqrt{1^2 + 2^2 + 2^2}} \right = 6$	M1	For using a correct distance formula
<i>OR</i> $AB = \mathbf{AC} \cdot \mathbf{AB} = \frac{[6, 7, 1] \cdot [1, 2, -2]}{\sqrt{1^2 + 2^2 + 2^2}} = 6$	A1	For correct length of <i>AB</i>
$B = (-1, -7, 2) \pm 6 \frac{(1, 2, -2)}{\sqrt{1^2 + 2^2 + 2^2}}$	M1	For using $B = A + \text{length of } AB \times \text{unit normal}$
$B = (-1, -7, 2) \pm (2, 4, -4)$	B1	For checking whether $+$ or $-$ is needed
B = (1, -3, -2)	A1	(substitute into plane equation) For correct coordinates (allow even if B0)
(ii) Find vector product of any two of $\pm [6, 7, 1], \pm [6, -3, 0], \pm (0, 10, 1)$	M1	For finding vector product of two relevant vectors
Obtain $k[1, 2, -20]$	A1	For correct vector n
$\theta = \cos^{-1} \frac{\left [1, 2, -2] \cdot [1, 2, -20] \right }{\sqrt{1^2 + 2^2 + 2^2} \sqrt{1^2 + 2^2 + 20^2}}$	M1* M1	For using scalar product of two normal vectors For stating both moduli in denominator
$\sqrt{1^2 + 2^2 + 2^2} \sqrt{1^2 + 2^2} + 20^2$	(dep*)	
$\theta = \cos^{-1} \frac{45}{\sqrt{9}\sqrt{405}} = 41.8^{\circ} (41.810^{\circ}, 0.72972)$	A1	For correct scalar product. f.t. from n
$\sqrt{9}\sqrt{405}$	A1 6	For correct angle

4727

Mark Scheme

January 2008

	1		
7 (i) (a) $\sin \frac{6}{8}\pi = \frac{1}{\sqrt{2}}$, $\sin \frac{2}{8}\pi = \frac{1}{\sqrt{2}}$	B1	1	For verifying $\theta = \frac{1}{8}\pi$
(b)	1		For sketching $y = \sin 6\theta$ and $y = \sin 2\theta$
	M1	M1	for 0,, $\theta_{,,} \frac{1}{2}\pi$
<i>K</i>	1011		<i>OR</i> any other correct method for solving $\sin 6\theta = \sin 2\theta$
\sim			for $\theta \neq k \frac{\pi}{2}$
			<i>OR</i> appropriate use of symmetry
			<i>OR</i> attempt to verify a reasonable guess for θ
$\theta = \frac{3}{8}\pi$	A1	2	For correct θ
(ii) Im $(c+is)^6 = 6c^5s - 20c^3s^3 + 6cs^5$	M1		For expanding $(c+is)^6$; at least 3 terms and 3 binomial
(II) $\operatorname{IIII}(c+1s) = 6c s - 20c s + 6cs$			coefficients needed
	A1		For 3 correct terms
$\sin 6\theta = \sin \theta \left(6c^5 - 20c^3(1 - c^2) + 6c(1 - c^2)^2 \right)$	M1		For using $s^2 = 1 - c^2$
$\sin 6\theta = \sin \theta \left(32c^5 - 32c^3 + 6c \right)$	A1		For any correct intermediate stage
$\sin 6\theta = 2\sin\theta\cos\theta \left(16c^4 - 16c^2 + 3\right)$	A1		For obtaining this expression correctly
$\sin 6\theta = \sin 2\theta \left(16\cos^4\theta - 16\cos^2\theta + 3\right)$		5	AG
(iii) $16c^4 - 16c^2 + 3 = 1$	M1		For stating this equation AEF
$\Rightarrow c^2 = \frac{2 \pm \sqrt{2}}{4}$	A1		For obtaining both values of c^2
4		-	2
$-$ sign requires larger $\theta = \frac{3}{8}\pi$	A1	3	For stating and justifying $\theta = \frac{3}{8}\pi$
	_		Calculator OK if figures seen
	1	.1	

4727

Mark Scheme

January 2008

(i) Group A: $e = 6$ Group B: $e = 1$ Group C: $e = 2^0$ OR 1 Group D: $e = 1$	$ \left. \begin{array}{c} B1 \\ B1 \\ 2 \end{array} \right $	For any two correct identities For two other correct identities AEF for <i>D</i> , but not " $m = n$ "
(ii)EITHER OR $A > 2 > 4 > 6 > 8$ orders of elements $2 > 4 > 8 > 2 < 6$ orders of elements $4 > 8 < 6 > 4 > 2$ $1, 2, 4, 4$ $6 > 2 > 4 < 6 > 8$ OR cyclic group $8 < 6 > 2 > 8 < 4$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1* B1*	For showing group table <i>OR</i> sufficient details of orders of elements <i>OR</i> stating cyclic / non-cyclic / Klein group (as appropriate) for one of groups <i>A</i> , <i>B</i> , <i>C</i> for another of groups <i>A</i> , <i>B</i> , <i>C</i>
$A \ncong B$ $B \ncong C$ $A \cong C$	B1 (dep*) B1 (dep*) B1 (dep*) 5	For stating non-isomorphic For stating non-isomorphic For stating isomorphic
(iii) $\frac{1+2m}{1+2n} \times \frac{1+2p}{1+2q} = \frac{1+2m+2p+4mp}{1+2n+2q+4nq}$ $= \frac{1+2(m+p+2mp)}{1+2(n+q+2nq)} \equiv \frac{1+2r}{1+2s}$	M1* M1 (dep*) A1 A1 4	For considering product of 2 distinct elements of this form For multiplying out For simplifying to form shown For identifying as correct form, so closed SR $\frac{\text{odd}}{\text{odd}} \times \frac{\text{odd}}{\text{odd}} = \frac{\text{odd}}{\text{odd}}$ earns full credit
(iv) Closure not satisfied Identity and inverse not satisfied	B1 B1 2	 SR If clearly attempting to prove commutativity, allow at most M1 For stating closure For stating identity and inverse SR If associativity is stated as not satisfied, then award at most B1 B0 OR B0 B1