CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	41

Section A

1	(a)	region of space area / volume where a mass experiences a force		B1 B1	[2]
	(b)	(i)	force proportional to product of two masses force inversely proportional to the square of their separation either reference to point masses or separation >> 'size' of masses	M1 M1 A1	[3]
		(ii)	field strength = GM / x^2 or field strength $\propto 1 / x^2$ ratio = $(7.78 \times 10^8)^2 / (1.5 \times 10^8)^2$ = 27	C1 C1 A1	[3]
	(c)	(i)	either centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ or centripetal force = mv^2 / R and $v = 2\pi R / T$ gravitational force provides the centripetal force either $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$ $M = 4\pi^2 R^3 / GT^2$ (allow working to be given in terms of acceleration)	B1 B1 M1 A0	[3]
		(ii)	$M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$ = 2.0 \times 10 ³⁰ kg	C1 A1	[2]
2	(a)	p, V	ys the equation pV = constant \times T or pV = nRT $'$ and T explained II values of p , V and T /fixed mass/ n is constant	M1 A1 A1	[3]
	(b)	(i)	$3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ n = 0.34 mol	M1 A0	[1]
		(ii)	for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ $T = 360 \text{K}$	C1 A1	[2]
	(c)	gas wor	en tap opened passed (from cylinder B) to cylinder A k done <u>on</u> gas in cylinder A (and no heating) nternal energy and hence temperature increase	B1 M1 A1	[3]

Mark Scheme

Paper

Syllabus

Page 3

			GCE AS/A LEVEL – May/June 2013	9702	41	
3	(a)	(i) 1.	amplitude = 1.7 cm		A1	[1]
		2.	period = 0.36 cm		C1	
			frequency = 1/0.36 = 2.8 Hz		A1	[2]
		(ii) a=	$= (-)\omega^2 x$ and $\omega = 2\pi/T$		C1	
		ac	celeration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = $5.2 \mathrm{m s^{-2}}$		M1 A0	[2]
	(b)	graph:			M1	.
		(if scale	from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ e not reasonable, do not allow second mark)		A1	[2]
	(c)		kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$		D4	
		or $\frac{1}{2}m\omega^{2}(x_{0}^{2}=2)$	potential energy = $\frac{1}{2}m\omega^2x^2$ and potential energy = kinet $x_0 - x^2$) = $\frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ or $\frac{1}{2}m\omega^2x^2 = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$	ic energy	B1 C1	
			$\sqrt{2} = 1.7 / \sqrt{2}$		A1	[3]
4	(a)		one moving unit positive charge finity (to the point)		M1 A1	[2]
	/l-\	/ a. a. i.a. i.a			D4	
	(D)		h) kinetic energy = change in potential energy = qV leading to $v = (2Vq/m)^{\frac{1}{2}}$		B1 B1	[2]
	(c)	either	$(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$		C1	
	(0)	on ror	V = 330 V this is less than 470 V and so 'no'		M1 A1	[3]
		or	$v = (2 \times 470 \times 9.58 \times 10^7)$		(C1)	
			$v = 3.0 \times 10^{5} \text{m s}^{-1}$ this is greater than $2.5 \times 10^{5} \text{m s}^{-1}$ and so 'no'		(M1) (A1)	
		or	$(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$		(C1)	
			$(q/m) = 6.6 \times 10^7 \text{C kg}^{-1}$ this is less than $9.58 \times 10^7 \text{C kg}^{-1}$ and so 'no'		(M1) (A1)	

Syllabus

Paper

Mark Scheme

Page 4

		J	GCE AS/A LEVEL – May/June 2013	9702	41	
5	(a)		form magnetic) flux normal to long (straight) wire carrying a cates) force per unit length of 1 N m ⁻¹	current of 1 A	M1 A1	[2]
	(b)	(i) 1	flux density = $4\pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$ = 6.6×10^{-3} T		C1 A1	[2]
		(ii) 1	flux linkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$ = 3.0×10^{-3} Wb		C1 A1	[2]
	(c)		(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)		M1 A1	[2]
		(ii)	e.m.f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$ = $7.4 \times 10^{-3} \text{ V}$		C1 A1	[2]
6	(a)		to reduce power loss in the core due to eddy currents/induced currents		B1 B1	[2]
		` '	either no power loss in transformer or input power = output power		B1	[1]
	(b)	eithe	er r.m.s. voltage across load = $9.0 \times (8100 / 300)$ peak voltage across load = $\sqrt{2} \times 243$ = 340 V		C1 A1	[2]
		or	peak voltage across primary coil = $9.0 \times \sqrt{2}$ peak voltage across load = $12.7 \times (8100/300)$ = 340 V		(C1) (A1)	. ,
7	(a)	` '	lowest frequency of e.m. radiation giving rise to emission of electrons (from the surface)		M1 A1	[2]
			E = hf		C1	
		1	threshold frequency = $(9.0 \times 10^{-19}) / (6.63 \times 10^{-34})$ = 1.4×10^{15} Hz		A1	[2]
	(b)	either $300 \text{ nm} \equiv 10 \times 10^{15} \text{Hz} \text{ (and } 600 \text{ nm} \equiv 5.0 \times 10^{14} \text{Hz)}$ or $300 \text{ nm} \equiv 6.6 \times 10^{-19} \text{ J (and } 600 \text{ nm} \equiv 3.3 \times 10^{-19} \text{ J)}$				
		or	zinc $\lambda_0 = 340$ nm, platinum $\lambda_0 = 220$ nm (and sodium λ_0 ssion from sodium and zinc	= 520 nm)	M1 A1	[2]
	(c)	fewe	n photon has larger energy er photons per unit time er electrons emitted per unit time		M1 M1 A1	[3]

Syllabus

Paper

Mark Scheme

Page 5

			GCE AS/A LEVEL – May/June 2013	9702	41	
8	(a)		(light) nuclei combine orm a more massive nucleus		M1 A1	[2]
	(b)	(i)	Δm = (2.01410 u + 1.00728 u) - 3.01605 u = 5.33 × 10 ⁻³ u energy = $c^2 \times \Delta m$ = 5.33 × 10 ⁻³ × 1.66 × 10 ⁻²⁷ × (3.00 × 10 ⁸) ²		C1 C1	
			$= 8.0 \times 10^{-13} \mathrm{J}$		A1	[3]
		(ii)	speed/kinetic energy of proton and deuterium must be very la so that the nuclei can overcome electrostatic repulsion	arge	B1 B1	[2]
			Section B			
9	(a)	(i)	light-dependent resistor/LDR		B1	[1]
		(ii)	strain gauge		B1	[1]
		(iii)	quartz/piezo-electric crystal		B1	[1]
	(b)	(i)	resistance of thermistor decreases as temperature increses		M1	
			etiher $V_{\text{OUT}} = V \times R / (R + R_{\text{T}})$ or current increases and $V_{\text{OUT}} = IR$ V_{OUT} increases		A1 A1	[3]
		(ii)	either change in $R_{\rm T}$ with temperature is non-linear or $V_{\rm OUT}$ is not proportional to $R_{\rm T}$ / change in $V_{\rm OUT}$ with R so change is non-linear	⊤ is non-linear	M1 A1	[2]
10	(a)		rpness: how well the edges (of structures) are defined trast: difference in (degree of) blackening between structures		B1 B1	[2]
	(b)	e.g.	scattering of photos in tissue/no use of a collimator/no use of large penumbra on shadow/large area anode/wide beam large pixel size	lead grid		
			(any two sensible suggestions, 1 each)		B2	[2]
	(c)	(i)	$I = I_0 e^{-\mu x}$ ratio = exp(-2.85 × 3.5) / exp(-0.95 × 8.0) = (4.65 × 10 ⁻⁵) / (5.00 × 10 ⁻⁴)		C1 C1	
			= 0.093		A1	[3]
		(ii)	either large difference (in intensities) or ratio much less than 1.0 so good contrast		M1 A1	[2]
			(answer given in (c)(ii) must be consistent with ratio given in	(c)(i))		

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	41

11	(a)	(i)	amplitude of the carrier wave varies (in synchrony) with the displacement of the information signal	M1 A1	[2]
		(ii)	e.g. more than one radio station can operate in same region/less interference enables shorter aerial increased range/less power required/less attenuation less distortion (any two sensible answers, 1 each)	B2	[2]
	(b)	(i)	frequency = 909 kHz wavelength = $(3.0 \times 10^8) / (909 \times 10^3)$ = 330 m	C1 A1	[2]
		(ii)	bandwidth = 18 kHz	A1	[1]
		` '			
		(iii)	frequency = 9000 Hz	A1	[1]
12	(a)		received signal, $28 = 10 \lg(P / \{0.36 \times 10^{-6}\})$ = $2.3 \times 10^{-4} \text{ W}$	C1 A1	[2]
	(b)	loss	s in fibre = $10 \lg({9.8 \times 10^{-3}} / {2.27 \times 10^{-4}})$ = $16 dB$	C1 A1	[2]
	(c)	atte	enuation per unit length = 16 / 85 = 0.19 dB km ⁻¹	A1	[1]