CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9702	41

Section A

1 M1 (a) work done bringing unit mass from infinity (to the point) A1 [2] **(b)** $E_{\rm P} = -m\phi$ B1 [1] C₁ (c) $\phi \propto 1/x$ $(= 1.05 \times 10^7 \text{ J kg}^{-1})$ either at 6R from centre, potential is $(6.3 \times 10^{7})/6$ and at 5R from centre, potential is $(6.3 \times 10^7)/5$ (= 1.26×10^7 J kg⁻¹) C1 change in energy = $(1.26 - 1.05) \times 10^7 \times 1.3$ C1 $= 2.7 \times 10^6 \text{ J}$ **A1** or change in potential = $(1/5 - 1/6) \times (6.3 \times 10^{\prime})$ (C1) change in energy = $(1/5 - 1/6) \times (6.3 \times 10^7) \times 1.3$ (C1) $= 2.7 \times 10^6 \text{ J}$ (A1) [4] 2 (a) the number of atoms M1 in 12 g of carbon-12 Α1 [2] **(b) (i)** amount = 3.2/40= 0.080 molΑ1 [1] (ii) pV = nRT $p \times 210 \times 10^{-6} = 0.080 \times 8.31 \times 310$ C1 $p = 9.8 \times 10^5 \, \text{Pa}$ **A1** [2] (do not credit if T in °C not K) (iii) either pV = $1/3 \times Nm < c^2 >$ $N = 0.080 \times 6.02 \times 10^{23} \ (= 4.82 \times 10^{22})$ and $m = 40 \times 1.66 \times 10^{-27}$ (= 6.64 × 10⁻²⁶) C1 $9.8 \times 10^{5} \times 210 \times 10^{-6} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times < c^{2} > 0.8 \times 10^{-2} \times < c^{2} \times 10^{-2} \times 10^{-2} \times < c^{2} \times 10^{-2$ C1 $\langle c^2 \rangle = 1.93 \times 10^5$ $c_{\rm RMS} = 440 \text{ m s}^{-1}$ Α1 [3] $Nm = 3.2 \times 10^{-3}$ or (C1) $9.8 \times 10^{5} \times 210 \times 10^{-6} = 1/3 \times 3.2 \times 10^{-3} \times < c^{2} >$ (C1) $\langle c^2 \rangle = 1.93 \times 10^5$ $c_{\rm RMS} = 440 \; {\rm m \; s^{-1}}$ (A1) $1/2 m < c^2 > = 3/2 kT$ (C1) or $1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 310$ (C1) $\langle c^2 \rangle = 1.93 \times 10^5$ $c_{\rm RMS} = 440 \; {\rm m \; s^{-1}}$ (A1)

	Paper
GCE AS/A LEVEL – May/June 2014 9702	41

3 (a) either change in volume =
$$(1.69 - 1.00 \times 10^{-3})$$
 or liquid volume << volume of vapour work done = $1.01 \times 10^{5} \times 1.69 = 1.71 \times 10^{5}$ (J)

(b) (i) 1. heating of system/thermal energy supplied to the system

2. work done on the system

(ii) $\Delta U = (2.26 \times 10^{6}) - (1.71 \times 10^{5})$ C1

 $= 2.09 \times 10^{6}$ J (3 s.f. needed)

4 (a) kinetic (energy)/KE/E_K

B1 [1]

(b) either change in energy = 0.60 mJ or $\frac{\text{max } E}{\text{proportional to (amplitude)}^{2}/\text{equivalent numerical working new amplitude is 1.3 cm} change in amplitude = 0.2 cm B1

(a) graph: straight line at constant potential = V_0 from $x = 0$ to $x = r$ curve with decreasing gradient passing through $(2r, 0.50V_0)$ and $(4r, 0.25V_0)$

(b) graph: straight line at $E = 0$ from $E = 0$ to $E = 0.20 \text{ J}$ A1 [3]

(b) graph: straight line at $E = 0$ from $E = 0$ to $E = 0.20 \text{ J}$ A1 [3]

(b) graph: straight line at $E = 0$ from $E = 0$ to $E = 0.20 \text{ J}$ A1 [3]

(c) $E = 0.20 \text{ J}$ A1 [2]

(di) $E = 0.20 \text{ J}$ A1 [2]

(e) $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

2. either $E = 0.20 \text{ J}$ A1 [2]

3. either $E = 0.20 \text{ J}$ A1 [2]

4. either $E = 0.20 \text{ J}$ A1 [2]

3. either $E = 0.20 \text{ J}$ A1 [2]

4. either $E = 0.20 \text{ J}$ A1 [2]

4. either $E = 0.20 \text{ J}$ A1 [2]

5. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A1 [2]

6. either $E = 0.20 \text{ J}$ A2 (A1)

6. either$

	Page 4		4 Mark Scheme Syllabus GCE AS/A LEVEL – May/June 2014 9702		Paper	
					41	
	(b)		ost (as thermal energy) in resistance/wires/battery/res/battery/res/battery/res/battery/res/battery/res/battery/res/battery/res/battery/res/batter	stor	B1	[1]
7	(a)	V	√ _H increases from zero when current switched on √ _H then non-zero constant √ _H returns to zero when current switched off		B1 B1 B1	[3]
	(b)	• • •	uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage)		M1 A1	[2]
		zero	e as current is being switched on e.m.f. when current in coil e in opposite direction when switching off		B1 B1 B1	[3]
8	(a)	allow: dis	and equal amounts (of charge) screte amounts of 1.6×10^{-19} C/elementary charge/e tegral multiples of 1.6×10^{-19} C/elementary charge/e		В1	[1]
	(b)	weight = 4.8×10^{-1} $q = 4.9 \times 10^{-1}$	$e^{-14} = (q \times 680)/(7.0 \times 10^{-3})$		C1 A1	[2]
	(c)		ntary charge = 1.6×10^{-19} C (allow 1.6×10^{-19} C to 1.7×10^{-19} C to 1	10 ⁻¹⁹ C)	MO	
		or it	is a common factor nighest common factor		C1 A1	[2]
9	(a)	max max rate	ime delay between illumination and emission (kinetic) energy of electron dependent on frequency (kinetic) energy of electron independent of intensity of emission of electrons dependent on/proportional to be separate statements, one mark each, maximum 3)	intensity	В3	[3]
	(b)	• • • • • • • • • • • • • • • • • • • •	oton) interaction with electron may be below surface rgy required to bring electron to surface		B1 B1	[2]

Mark Scheme

Syllabus

Paper

Page 5

		ige s		9702	41	
			GCE AS/A LEVEL – May/June 2014	9702	41	
		(ii)	1. threshold frequency = 5.8×10^{14} Hz		A1	[1]
			2. $\Phi = hf_0$ = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$		C1	
			$= 3.84 \times 10^{-19} (J)$		C1	
			= $(3.84 \times 10^{-19})/(1.6 \times 10^{-19})$ = 2.4 eV		A1	[3]
			or			
			$hf = \Phi + E_{MAX}$		(C1)	
	chooses point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV		(C1)			
		Φ = 2.4 eV		(A1)		
10	(a)		ergy required to separate the nucleons (in a nucleus)		M1	
			nfinity <i>low reverse statement</i>)		A1	[2]
	(b)	(i)	$\Delta m = (2 \times 1.00867) + 1.00728 - 3.01551$ = 9.11 × 10 ⁻³ u		C1 C1	
			binding energy = $9.11 \times 10^{-3} \times 930$			[0]
			= 8.47 MeV (allow 930 to 934 MeV so answer could be in range 8.47 to	8.51 MeV)	A1	[3]
			(allow 2 s.f.)			
		(ii)	$\Delta m = 211.70394 - 209.93722$ = 1.76672 u		C1	
			binding energy per nucleon = (1.76672 × 930)/210 = 7.82 MeV		C1 A1	[2]
			(allow 930 to 934 MeV so answer could be in range 7.82 to (allow 2 s.f.)	7.86 MeV)	AI	[3]
	(c)		al binding energy of barium and krypton		M1	101
		ıs g	greater than binding energy of uranium		A1	[2]
Section B						
11	(a)	(i)	inverting amplifier		B1	[1]
		(ii)	gain is <u>very</u> large/infinite		B1	
			V⁺ is earthed/zerofor amplifier not to saturate, P must be (almost) earth/zero		B1 B1	[3]
	/ b \	/:\	P = 100 kg		A1	
	(n)	(1)	$R_{A} = 100 \text{ k}\Omega$ $R_{B} = 10 \text{ k}\Omega$		A1	
			$V_{IN} = 1000 \text{ mV}$		A1	[3]
		(ii)	variable range meter		B1	[1]

Page 6	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2014	9702	41	

12	(a)	series of X-ray images (for one section/slice) taken from different angles to give image of the section/slice repeated for many slices to build up three-dimensional image (of whole object)	M1 M1 A1 M1 A1	[5]
	(b)	deduction of background from readings division by three	C1 C1	
		P=5 Q=9 R=7 S=13		
		(four correct 2/2, three correct 1/2)	A2	[4]
13	(a)	e.g. noise can be eliminated/waveform can be regenerated extra bits of data can be added to check for errors cheaper/more reliable greater rate of transfer of data		
		(1 each, max 2)	B2	[2]
	(b)	receives bits all at one time transmits the bits one after another	B1 B1	[2]
	(c)	sampling frequency must be higher than/(at least) twice frequency to be sampled either higher (range of) frequencies reproduced on the disc or lower (range of) frequencies on phone	M1 A1	
		either higher quality (of sound) on disc or high quality (of sound) not required for phone	B1	[3]
14	(a)	reduction in power (allow intensity/amplitude)	B1	[1]
	(b)	(i) attenuation = 2.4×30		
	` ,	= 72 dB	A1	[1]
		(ii) gain/attenuation/dB = 10 $\lg(P_2/P_1)$ $72 = 10 \lg(P_{IN}/P_{OUT})$ or $-72 = 10 \lg(P_{OUT}/P_{IN})$ ratio = 1.6×10^7	C1 C1 A1	[3]
	(c)	e.g. enables smaller/more manageable numbers to be used e.g. gains in dB for series amplifiers are added, not multiplied	B1	[1]