4726 Mark Scheme January 2008

4726 Further Pure Mathematics 2

1	(i)	Get f '(x) = $\pm \sin x/(1+\cos x)$ Get f "(x) using quotient/product rule Get f(0) = $\ln 2$, f '(0) = 0 , f"(0) = $-\frac{1}{2}$	M1 M1 B1 A1	Reasonable attempt at chain at any stage Reasonable attempt at quotient/product Any one correct from correct working All three correct from correct working
	(ii)	Attempt to use Maclaurin correctly $Get \ln 2 - \frac{1}{4} x^2$	M1 A1√	Using their values in $af(0)+bf'(0)x+cf''(0)x^2$; may be implied From their values; must be quadratic
2	(i)	Clearly verify in $y = \cos^{-1} x$ Clearly verify in $y = \frac{1}{2}\sin^{-1} x$	B1 B1 SR	i.e. $x=\frac{1}{2}\sqrt{3}$, $y=\cos^{-1}(\frac{1}{2}\sqrt{3})=\frac{1}{6}\pi$, or similar Or solve $\cos y = \sin 2y$ Allow one B1 if not sufficiently clear detail
	(ii)	Write down at least one correct diff'al Get gradient of -2 Get gradient of 1	M1 A1 A1	Or reasonable attempt to derive; allow ± cao cao
3	(i)	Get y- values of 3 and $\sqrt{28}$ Show/explain areas of two rectangles eq y- value x 1, and relate to A	B1 jual B1	Diagram may be used
	(ii)	Show $A>0.2(\sqrt{(1+2^3)} + \sqrt{(1+2.2^3)} +$ $\sqrt{(1+2.83)})$ = 3.87(28) Show $A<0.2(\sqrt{(1+2.2^3)} + \sqrt{(1+2.4^3)} +$ $+\sqrt{(1+3^3)})$ = 4.33(11) < 4.34	M1 A1 M1 A1	Clear areas attempted below curve (5 values) To min. of 3 s.f. Clear areas attempted above curve (5 values) To min. of 3 s.f.
4	(i)	Correct formula with correct r Expand r^2 as $A + Bsec\theta + Csec^2\theta$ Get $C tan\theta$ Use correct limits in their answer Limits to $\frac{1}{12}\pi + 2 \ln(\sqrt{3}) + \frac{2\sqrt{3}}{3}$	M1 M1 B1 M1	May be implied Allow $B = 0$ Must be 3 terms AEEF; simplified

4726 Mark Scheme January 2008

- 5 (i) Attempt use of product rule M1 Clearly get x = 1 Allow substitution of x = 1
 - (ii) Explain use of tangent for next approx. B1 Not use of G.C. to show divergence Tangents at successive approx. give x>1 B1 Relate to crossing x-axis; allow diagram
 - (iii) Attempt correct use of N-R with their derivative M1Get $x_2 = -1$ Get $x_2 = -1$ Al $x_2 = -1$ Al $x_3 = -1$ Continue until correct to 3 d.p.
 M1 May be implied Get $x_3 = -0.567$ Al $x_3 = -0.567$ Al $x_3 = -0.567$
- 6 (i) Attempt division/equate coeff. M1 To lead to some ax+b (allow b=0 here)
 Get a=2, b=-9 A1
 Derive/quote x=1 B1 Must be equations
 - Write as quadratic in x $(2x^2-x(11+y)+(y-6)=0)$ (ii) M1Use $b^2 \ge 4ac$ (for real x) Allow <, >M1Get $y^2 + 14y + 169 \ge 0$ **A**1 Attempt to justify positive/negative M1Complete the square/sketch Get $(y+7)^2 + 120 \ge 0$ – true for all y **A**1 Attempt diff; quot./prod. rule M1 SC Attempt to solve dy/dx = 0
 - Attempt to solve dy/dx = 0 M1 Show $2x^2 - 4x + 17 = 0$ has no real roots e.g. $b^2 - 4ac < 0$ A1 Attempt to use no t.p. M1 Justify all y e.g. consider asymptotes and approaches A1
- 7 (i) Get $x(1+x^2)^{-n} \int x.(-n(1+x^2)^{-n-1}.2x) dx$ M1 Reasonable attempt at parts Accurate use of parts A1 Clearly get A.G. B1 Include use of limits seen
 - (ii) Express x^2 as $(1+x^2)-1$ Get $x^2 = 1 - 1$ $(1+x^2)^{n+1} (1+x^2)^n (1+x^2)^{n+1}$ B1 Justified Show $I_n = 2^{-n} + 2n(I_n - I_{n+1})$ M1 Clear attempt to use their first line above Tidy to A.G.
 - (iii) See $2I_2 = 2^{-1} + I_1$ B1 Work out $I_1 = \frac{1}{4}\pi$ M1 Quote/derive $\tan^{-1}x$ Get $I_2 = \frac{1}{4} + \frac{1}{8}\pi$ A1

4726	Mark Scheme	January 2008

8	(i)	Use correct exponential for sinh <i>x</i> Attempt to expand cube of this Correct cubic Clearly replace in terms of sinh	B1 M1 A1 B1	Must be 4 terms (Allow RHS→ LHS or RHS = LHS separately)
	(ii)	Replace and factorise Attempt to solve for $\sinh^2 x$ Get $k>3$	M1 M1 A1	Or state $\sinh x \neq 0$ (= \frac{1}{4}(k-3)) or for k and use $\sinh^2 x > 0$ Not \geq
	(iii)	Get $x = \sinh^{-1}c$ Replace in ln equivalent Repeat for negative root	M1 $A1$ $A1$ SR	$(c=\pm\frac{1}{2})$; allow $\sinh x = c$ As $\ln(\frac{1}{2} + \sqrt{\frac{5}{4}})$; their x May be given as neg. of first answer (no need for $x=0$ implied) Use of exponential definitions Express as cubic in $e^{2x} = u$ M1 Factorise to $(u-1)(u^2-3u+1)=0$ A1 Solve for $x=0$, $\frac{1}{2}\ln(\frac{3}{2} \pm \frac{\sqrt{5}}{2})$ A1
9	(i) (ii)	Get sinh $y^{dy}/_{dx} = 1$ Replace sinh $y = \sqrt{(\cosh^2 y - 1)}$ Justify positive grad. to A.G. Get $k \cosh^{-1} 2x$ Get $k=\frac{1}{2}$	M1 A1 B1 M1 A1	Or equivalent; allow \pm Allow use of ln equivalent with Chain Rule e.g. sketch No need for c
	(iii)	Sub. $x = k \cosh u$ Replace all x to $\int k_1 \sinh^2 u du$ Replace as $\int k_2 (\cosh 2u - 1) du$ Integrate correctly Attempt to replace u with x equivalent Tidy to reasonable form	M1 A1 M1 A1√ M1 A1	Or exponential equivalent No need for c In their answer cao $(\frac{1}{2}x\sqrt{4x^2-1})$ - $\frac{1}{4}\cosh^{-1}2x$ (+ c))