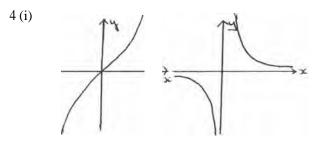
Mark Scheme 4726 January 2007

4726

Mark Scheme


Jan 2007

1 (i) f(O) = In 3 ff'(O) = '/₃ f'(O) = -'/₉ A.G.

(ii) Reasonable attempt at Maclaurin

$$f(x) = \ln 3 + \frac{1}{3}x - \frac{1}{18}x^2$$

- 2 (i) f(0.8) = 0.03, f(0.9) = +0.077 (accurately e.g. accept -0.02 t0 -0.04) Explain (change of sign, graph etc.)
- (ii) Differentiate two terms
 Use correct form of Newton-Ra ph son with
 0.8, using their f '(x)
 Use their N-R to give one more approximation
 to 3 d.p. minimum
 Get x = 0.835
- 3 (i) Show area of rect. = $\frac{1}{4}(e^{1/16} + e^{1/4} + e^{9/16} + e^{1})$ Show area = 1.7054 Explain the < 1.71 in terms of areas
- (ii) Identify areas for > sign Show area of rect. = $\frac{1}{4} (e^{0} + e^{110} + e^{1/4} + e^{9/16})$ Get A > 1.27

- (ii) Correct definition of sinh *x* Invert and mult. by eX to AG.
 - Sub. $u = e^{x}$ and $du = e^{x} dx$

Replace to $2/(u^2 - 1) du$ Integrate to aln((u - l)/(u + 1))Replace u Bl Bl

B1 Clearly derived

MI Form In3 + $ax + bx^2$, with a, brelated to f "f" A/\sqrt{J} On their values off' and f" SR Use ln(3+x) = In3 + In(1 + 1/3)x) MI Use Formulae Book to get In3 + Y3X - Y2(VJX)2 =In3 + Y3X - 1/1gX2 Al

B1 D1

DI	
SR Use $x = \sqrt{J(tan^{-1}x)}$ and compare x	x to
$\sqrt{J(\tan^{-1} x)}$ for $x=0.8, 0.9$	B 1
Explain "change in sign"	B 1

B1 Get $2x - I l(1 + x^2)$

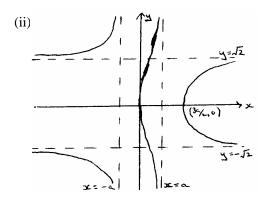
M1 0.8 - f(0.8)/f '(0.8)

Ml√

Al 3d.p. - accept answer which rounds Ml Or numeric equivalent Al At least 3 d.p. correct Bl AG. Inequality required

B1 Inequality or diagram required Ml Or numeric evidence Al cao; or answer which rounds down

- BI Correct shape for $\sinh x$
- B1 Correct shape for cosech x
- B1 Obvious point $(dy/dx \neq O)/asymptotes$ clear
- B1 May be implied
- B1 Must be clear; allow 2/(eX e -X) as minimum simplification
- M1 Or equivalent, all *x* eliminated and not dx = du
- Al
- A1 $\sqrt{}$ Use formulae book, PT, or atanh⁻¹u
- Al No need for *c*


Mark Scheme

Jan 2007

4726

- 5 (i) Reasonable attempt at parts Get xnsin $x - \int \sin x \cdot nx^{n-1} dx$ Attempt parts again Accurately Clearly derive AG.
 - (ii) Get $I_4 = (1/2\pi)^4 12I_2$ or $I_2 = (1/2\pi)^2 2I_0$ Show clearly $I_0 = 1$ Replace their values in relation Get $I_4 = 1/16\pi^4 - 3\pi^2 + 24$

6 (i)
$$x = \pm a$$
, $y = 2$

7 (i) Write as
$$A/t + B/t^2 + (Ct + D)/(t^2 + 1)$$

Equate $At(t^2+1) + B(t^2+1) + (Ct+D)t^2$ to 1 - t^2 Insert t values / equate coeff. Get A = C = 0, B = L D = -2

(ii) Derive or quote $\cos x$ in terms of tDerive or quote $dx = 2 dt/(1 + t^2)$ Sub. in to correct P.F. Integrate to $-1/t - 2 tan^{-1}t$ Use limits to clearly get AG.

8 (i) Get
$$(e^y - e^{-y})/(e^y + e^{-y})$$

- (ii) Attempt quad. in e^{γ} Solve for e^{γ} Clearly get AG.
- (iii) Rewrite as $\tanh x = k$ Use (ii) for $x = \sqrt{2} \ln 7$ or equivalent
- (iv) Use of log laws Correctly equate $\ln A = \ln B$ to A = BGet $x = \pm \frac{3}{5}$

M1 Involving second integral Al M1 Al A1 Indicate $(1/2\pi)^n$ and 0 from limits

B1, B1, B1 Must be =; no working needed

- B1 Two correct labelled asymptotes || Ox and approaches
- B1 Two correct labelled asymptotes || *Oy* and approaches
- B1 Crosses at (³/₂*a*,0) (and (0,0) may be implied
- B1 90° where it crosses Ox; smoothly
- B1 Symmetry in Ox

M1 Allow $(At+B)/t^2$; justify $B/t^2 + D/(l + t^2)$ if only used

M1√

M1 Lead to at least two constant values A1

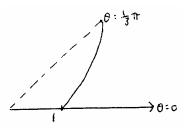
SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong

B1 B1

M1 Allow $k (l-t^2)/((t^2(l+t^2)))$ or equivalent Al $\sqrt{1}$ From their k Al

B1 Allow $(e^{2Y}-1)/(e^{2y}+1)$ or if x used

M1 Multiply by e^{γ} and tidy M1


- Al
- M1 SR Use hyp defⁿ to get quad. in e^{X} M I Al Solve $e^{2x} = 7$ for x to $\frac{1}{2} \ln 7$ Al Bl One used correctly M1 Or $\ln(^{A}l_{B}) = 0$ Al

4726

Mark Scheme

Jan 2007

9 (i)

- (ii) U se correct formula with correct r $f \sec^2 x \, dx = \tan x \text{ used}$ Quote f2 secx tanx $dx = 2 \sec x$ Replace $\tan^2 x$ by $\sec^2 x - 1$ to integrate Reasonable attempt to integrate 3 terms And to use limits correctly Get $\sqrt{3} + 1 - \frac{1}{6}\pi$
- (iii) Use $x = r \cos\theta$, $y = r \sin\theta$, $r = (x^2 + y^2)^{1/2}$ Reasonable attempt to eliminate r, θ Get $y = (x-1)\sqrt{(x^2 + y^2)}$

B1 Shape for correct θ ; ignore other θ Used; start at (*r*,0)

B1 θ =0, *r*=1 and increasing *r*

B1 B1 B1 Or sub. correctly M1

M1 Al Exact only

M1 M1 A1 Or equivalent