4726 Further Pure Mathematics 2

1	(i)	Give $1 + 2x + (2x)^2/2$ Get $1 + 2x + 2x^2$	M1 A1	Reasonable 3 term attempt e.g. allow $2x^2/2$ cao SC Reasonable attempt at $f'(0)$ and $f''(0)$ M1 Get $1+2x+2x^2$ cao A1
	(ii)	$\ln((1+2x+2x^2) + (1-2x+2x^2)) =$	M1	Attempt to sub for e^{2x} and e^{-2x}
		$\ln(2+4x^{2}) = \ln 2 + \ln(1 + 2x^{2})$ $\ln 2 + 2x^{2}$	A1√ M1 A1	On their part (i) Use of log law in reasonable expression cao SC Use of Maclaurin for f '(x) and f"(x) M1 One correct A1 Attempt f(0), f '(0) and f"(0) Get cao A1
2	(i)	$x_2 = 1.8913115$ $x_3 = 1.8915831$ $x_4 = 1.8915746$	B1 B1√ B1	x_2 correct; allow answers which round For any other from their working For all three correct
	(ii)	$e_3/e_2 = -0.031(1)$	M1	Subtraction and division on their values; allow ±
		$e_4/e_3 = -0.036(5)$ State f'(\alpha) \approx e_3/e_2 \approx e_4/e_3	A1 B1√	Or answers which round to -0.031 and -0.037 Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f'
3	(i)	Diff. $\sin y = x$ Use $\sin^2 + \cos^2 = 1$ to A.G. Justify +	M1 A1 B1	Implicit diff. to $dy/dx = \pm (1/\cos y)$ Clearly derived; ignore \pm e.g graph/ principal values
	(ii)	Get $2/(\sqrt{(1-4x^2)} + 1/(\sqrt{(1-y^2)}) dy/dx = 0$	M1	Attempt implicit diff. and chain rule; allow e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$
		Find $y = \sqrt{3/2}$ Get $-2\sqrt{3/3}$	A1 M1 A1√	Method leading to y AEEF; from their a above SC Write $\sin(\frac{1}{2}\pi - \sin^{-1}2x) = \cos(\sin^{-1}2x)$ B1 Attempt to diff. as above M1 Replace x in reasonable $\frac{dy}{dx}$ and attempt to tidy M1 Get result above A1

4	(i)	Let $x = \cosh \theta$ such that	M1	
		$dx = \sinh \theta d\theta$ Clearly use $\cosh^2 - \sinh^2 = 1$	A1	Clearly derive A.G.
	(ii)	Replace $\cosh^2\theta$ Attempt to integrate their expression	M1 M1	Allow $a (\cosh 2\theta \pm 1)$ Allow $b \sinh 2\theta \pm a\theta$
		Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta (+c)$ Clearly replace for x to A.G.	A1 B1	Condone no + c SC Use expo. def ⁿ ; three terms M1 Attempt to integrate M1 Get $\frac{1}{8}(e^{2\theta}-e^{-2\theta}) + \frac{1}{2}\theta$ (+ c) A1 Clearly replace for x to A.G. B1
5	(i)	(a) State (<i>x</i> =) α None of roots	B1 B1	No explanation needed
		(b) Impossible to say All roots can be derived	B1 B1	Some discussion of values close to 1 or 2 or central leading to correct conclusion
	(ii)	/	B1	Correct x for $y=0$; allow 0.591, 1.59, 2.31
		(1, 0.8)	B1	Turning at (1,0.8) and/or (1,-0.8)
		$O = \alpha \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)_{\mathcal{B}} \left(\begin{array}{c} \\ \\ \\ \end{array} \right)^{-x}$	B1	Meets x-axis at 90°
		(1, -0.8)	B1	Symmetry in x-axis; allow
6	(i)	Correct definitions used Attempt at $(e^x-e^{-x})^2/4 + 1$ Clearly derive A.G.	B1 M1 A1	Allow $(e^{x}+e^{-x})^{2}+1$; allow /2
	(ii)	Form a quadratic in $\sinh x$ Attempt to solve Get $\sinh x = -\frac{1}{2}$ or 3	M1 M1 A1	Factors or formula
		Use correct ln expression Get $\ln(-\frac{1}{2} + \frac{\sqrt{5}}{2})$ and $\ln(3 + \sqrt{10})$	M1 A1	On their answer(s) seen once
7	(i)	$OP= 3 + 2\cos \alpha$ $OQ=3 + 2\cos(\frac{1}{2}\pi + \alpha)$ $= 3 - 2\sin \alpha$	M1	Any other unsimplified value
		Similarly $OR=3-2\cos\alpha$	M1	Attempt at simplification of at least two correct expressions
		$OS=3 + 2\sin \alpha$ $Sum = 12$	A1	cao
	(ii)	Correct formula with attempt at r^2 Square r correctly Attempt to replace $\cos^2\theta$ with	M1 A1 M1	Need not be expanded, but three terms if it is
		$a(\cos 2\theta \pm 1)$ Integrate their expression Get $^{11\pi}/_4 - 1$	A1√ A1	Need three terms cao

8	(i)	Area = $\int 1/(x+1) dx$ Use limits to $\ln(n+1)$	B1 B1	Include or imply correct limits
		Compare area under curve to areas	B1	Justify inequality
		of rectangles Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$	M1	Sum seen or implied as 1 x y values
		Clear detail to A.G.	A1	Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$
	(ii)	Show or explain areas of	M1	
		rectangles above curve Areas of rectangles (as above) > area under curve	A1	First and last heights seen or implied; A.G.
	(iii)	Add 1 to both sides in (i) to make $\sum (1/r)$	B1	Must be clear addition
		Add $^{1}/_{(n+1)}$ to both sides in (ii) to make $\sum (^{1}/r)$	B1	Must be clear addition; A.G.
	(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1	Allow not convergent
9	(i)	Require denom. = 0 <u>Explain</u> why denom. $\neq 0$	B1 B1	Attempt to solve, explain always > 0 etc.
	(ii)	Set up quadratic in x Get $2yx^2-4x+(2a^2y+3a)=0$	M1 A1	
		Use $b^2 \ge 4ac$ for real x	M1	Produce quadratic inequality in <i>y</i> from their quad.; allow use of = or <
		Attempt to solve their inequality Get $y > \frac{1}{2a}$ and $y < \frac{-2}{a}$	M1 A1	Factors or formula Justified from graph
		300) / 24 4114) / / 4		SC Attempt diff. by quot./product rule M1
				Get $x=2a$ and $x=-a/2$ A1
				Attempt to find two y values M1 Get correct inequalities (graph used to justify them) A1
	(iii)	Split into two separate integrals	M1	
	()	Get $k \ln(x^2 + a^2)$	A 1	$\operatorname{Or} p \ln(2x^2 + 2a^2)$
		Get $k_1 \tan^{-1}(x/a)$ Use limits and attempt to simplify	A1 M1	k_1 not involving a
		Get $\ln 2.5 - 1.5 \tan^{-1} 2 + 3\pi/8$	A1	AEEF
			711	SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta \ d\theta$ M1
				Reduce to $\int p \tan \theta - p_1 d\theta$ A1 (ignore limits here)
				Integrate to $p\ln(\sec\theta)-p_1\theta$ A1 Use limits (old or new) and
				attempt to simplify M1
				Get answer above A1