4721/01

ADVANCED SUBSIDIARY GCE MATHEMATICS

Core Mathematics 1

WEDNESDAY 9 JANUARY 2008

Afternoon Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

You are not allowed to use a calculator in this paper.

This document consists of **4** printed pages.

© OCR 2008 [Y/102/2693]

OCR is an exempt Charity

[Turn over

[2]

2

- Express $\frac{4}{3-\sqrt{7}}$ in the form $a + b\sqrt{7}$, where a and b are integers. 1 [3]
- 2 (i) Write down the equation of the circle with centre (0, 0) and radius 7. [1]
 - (ii) A circle with centre (3, 5) has equation $x^2 + y^2 6x 10y 30 = 0$. Find the radius of the circle. [2]
- Given that $3x^2 + bx + 10 = a(x+3)^2 + c$ for all values of x, find the values of the constants a, b and c. 3 [4]
- 4 Solve the equations
 - (i) $10^p = 0.1$, [1]
 - (ii) $(25k^2)^{\frac{1}{2}} = 15$, [3]

(iii)
$$t^{-\frac{1}{3}} = \frac{1}{2}$$
. [2]

- (i) Sketch the curve $y = x^3 + 2$. 5 [2]
 - (ii) Sketch the curve $y = 2\sqrt{x}$. [2]
 - (iii) Describe a transformation that transforms the curve $y = 2\sqrt{x}$ to the curve $y = 3\sqrt{x}$. [3]

(i) Solve the equation $x^2 + 8x + 10 = 0$, giving your answers in simplified surd form. 6 [3]

- (ii) Sketch the curve $y = x^2 + 8x + 10$, giving the coordinates of the point where the curve crosses the v-axis. [3]
- (iii) Solve the inequality $x^2 + 8x + 10 \ge 0$. [2]
- 7 (i) Find the gradient of the line *l* which has equation x + 2y = 4. [1]
 - (ii) Find the equation of the line parallel to l which passes through the point (6, 5), giving your answer in the form ax + by + c = 0, where a, b and c are integers. [3]
 - (iii) Solve the simultaneous equations

$$y = x^2 + x + 1$$
 and $x + 2y = 4$. [4]

- (i) Find the coordinates of the stationary points on the curve $y = x^3 + x^2 x + 3$. 8 [6]
 - (ii) Determine whether each stationary point is a maximum point or a minimum point. [3]
 - (iii) For what values of x does $x^3 + x^2 x + 3$ decrease as x increases?

3

- 9 The points A and B have coordinates (-5, -2) and (3, 1) respectively.
 - (i) Find the equation of the line AB, giving your answer in the form ax + by + c = 0. [3]
 - (ii) Find the coordinates of the mid-point of *AB*. [2]

The point *C* has coordinates (-3, 4).

- (iii) Calculate the length of *AC*, giving your answer in simplified surd form. [3]
- (iv) Determine whether the line AC is perpendicular to the line BC, showing all your working. [4]

10 Given that
$$f(x) = 8x^3 + \frac{1}{x^3}$$
,

(i) find
$$f''(x)$$
, [5]

(ii) solve the equation
$$f(x) = -9$$
. [5]

4

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.