Version 1.0

General Certificate of Education June 2010

MathematicsMS1BStatisticsSS1B

Statistics 1B

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
Е	mark is for explanation							
$\sqrt{\text{or ft or F}}$	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only MR mis-read							
CSO	correct solution only RA required accuracy							
AWFW	anything which falls within FW further work							
AWRT	anything which rounds to ISW ignore subsequent work							
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
−x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments
1(a)	r = 0.915	В3		AWRT (0.91504)
	r = 0.91 to 0.92 $r = 0.88$ to 0.95	(B2) (B1)		AWFW AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2$ and $\sum xy$ or Attempt at S_{xx} S_{yy} and S_{xy}	(M1)		12510 15835890 1180 146616 and 1510062 (all 5 attempted) 185880 7376 and 33882 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r	(m1)		
	r = 0.915	(A1)	3	AWRT
(b)	Very strong / strong / fairly strong positive (linear) correlation / relationship / association / link (but not 'trend')	B1dep		Dependent on $0.88 < r < 0.95$ Or equivalent; must qualify strength and indicate positive B0dep for (almost) perfect / high / average / medium / some / etc
	weight and (engine) power/bhp of (hatchback) cars	B1	2	Context; providing $0 < r < 1$
	Examples: The more weight/heavier the more/greater power ⇒ B0dep B1 Strong correlation and as weight/kg increases so does engine power / bhp ⇒ B0dep B1			No mention of strength Mention of strength but implied suggestion of positive not sufficient
	Total		5	

Q	Solution	Marks	Total	Comments
2	-18 -11 1 15 7 -1 17 -16 18 -3 0 9			
(a)(i)	Mean, $\overline{d} = 1.5$	B1		CAO $\sum d = 18$ Ignore notation and units
	Standard deviation, σ_d or s_d = 11.7 to 12.3	B1	2	AWFW (11.737 or 12.259) $\sum d^2 = 1680$
(ii)	Mean, $\overline{x} = 50 + \overline{d} = 51.5$	B1F		F on (a)(i) or correct
	<i>x</i> : 32 39 51 65 57 49 67 4 68 47 50 59 Standard deviation, σ_x or s_x			$\sum x = 618$ Ignore notation and units $\sum x^2 = 33480$
	= 11.7 to 12.3	B1F	2	F on (a)(i) providing > 0 or correct
(b)	[Values, mean or sd in (a)(i) or (a)(ii)] $\times \frac{1.22}{100} \text{ or } 1.22$	M1		Award if use seen or implied by ≥1 Subsequent correct or (correct × 100) answer
	Mean = 0.628 to 0.63	A1		AWFW (0.6283)
	Standard deviation = 0.14 to 0.151	A1	3	AWFW (0.1432 or 0.1496)
	Special Cases: At least one answer correct with no stated units or incorrect stated units \Rightarrow M1 A1 A1 max At least one answer \times 100 with its units stated as 'cents' \Rightarrow M1 A1 A1 max At least one answer \times 100 with no units stated or units stated as euros / pence / £ \Rightarrow M1 only			'cents' attached to ≥1 answer × 100
	Total		7	

Q	Solution	Marks	Total	Comments
3	<u>Time</u> , $X \sim N(65, 20^2)$			
(a) (i)	$P(X < 90) = P\left(Z < \frac{90 - 65}{20}\right) - \left[P\left(Z < \frac{0 - 65}{20}\right) = P\left(Z < -3.25\right) = 0.00058\right]$	M1		Standardising (89.5, 90 or 90.5 or 59.5, 60 or 60.5) with 65 and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(65 - x)$ May be gained in (a)(i) or (a)(ii)
	= P(Z < 1.25)	A1		CAO; ignore inequality and sign May be implied by a correct answer
	= 0.893 to 0.895	A1		AWFW (0.89435)
(ii)	P(X > 60) = P(Z > -0.25)			
	= P(Z < 0.25)	M1		Area change May be implied by a correct answer or answer > 0.5
	= 0.598 to 0.599	A1	5	AWFW (0.59871)
(b) (i)	P(1 in 6 = 60) = 0 or zero or impossible	B1	1	Ignore any working B0 for 'impossible to calculate'
(ii)	P(X < 60) = 1 - [(a)(ii)] or (0.401) to (0.402)	M1		May be implied
	$P(6 \text{ in } 6 < 60) = p^6 \text{ with } 0 < p < 1$	M1		Any probability to power 6; do not allow multiplying factors
	= $(0.40129)^6$ = 0.004 to 0.00425	A1dep	3	Dependent on M1 M1 (0.0041759)
(iii)	Variance of $\overline{X}_6 = 20^2/6 = 66.6$ to 66.7 or Sd of $\overline{X}_6 = 20/\sqrt{6} = 8.16$ to 8.17	B1		CAO/AWFW Stated or used anywhere in (b) CAO/AWFW
	$P(\bar{X}_6 < 60) = P(Z < \frac{60 - 65}{20/\sqrt{6}}) =$	M1		Standardising 60 with 65 and $20/\sqrt{6}$ or equivalent allow (65 – 60)
	P(Z < -0.61) = 1 - P(Z < 0.61)	m1		Area change May be implied by a correct answer or answer < 0.5
	= 1 - 0.72907 = = 0.27(0) to 0.271	A1	4	AWFW (0.27093) (1 - answer) \Rightarrow B1 M1 max
	Note: Watch for answers to (ii) and (iii) interchanged			
	Total		13	

Q	Solution	Marks	Total	Comments
4(a)	$M \sim B(50, 0.15)$	M1		Used somewhere in (a); may be implied
(i)	$P(M \le 10) = 0.88(0)$	A1	2	AWRT (0.8801)
(ii)	$P(M \ge 5) = 1 - P(M \le 4)$ = 1 - (0.1121 or 0.2194) = 0.888	M1 A1	2	Requires '1 –'; accept 3 dp accuracy Implied by 0.888 but not by 0.781 AWRT (0.8879)
(iii)	$P(6 < R < 12) = 0.9372 \text{ or } 0.9699$ (p_1)	M1		Accept 3 dp accuracy rounding or truncation $p_2 - p_1 \implies M0 \text{ M0 A0}$ $(1 - p_2) - p_1 \implies M0 \text{ M0 A0}$ $p_1 - (1 - p_2) \implies M1 \text{ M0 A0}$
	minus 0.3613 or 0.2194 (p_2)	M1		only providing result > 0 Accept 3 dp accuracy
	= 0.576	A1		AWRT (0.5759)
	OR B(50, 0.15) expressions stated for at least 3 terms within $5 \le R \le 12$ gives	(M1)		Can be implied by correct answer
	probability = 0.576	(A2)	3	AWFW (0.5759)
(b)	$F \sim B(35, 0.11)$	M1		Implied from correct stated formula; do not accept misreads
	$P(F = 4) = {35 \choose 4} (0.11)^4 (0.89)^{31}$	A1		Can be implied by a correct answer Ignore any additional terms
	= 0.206 to 0.208	A1	3	AWFW (0.20685)
(c)	or $P(M \text{ and } LH) = 0.52 \times 0.15 = 0.078$) $N(M) = 2000 \times 0.52 = 1040$)	M1		≥1 of these 2 probabilities or ≥1 of these 2 numbers attempted; may be implied
	or $P(F \text{ and } LH) = 0.48 \times 0.1 = 0.0528)$ $N(F) = 2000 \times 0.48 = 960)$	A1		2 probabilities or 2 numbers evaluated correctly
	N(<i>M</i> and <i>LH</i>) = $2000 \times 0.078 = 1040 \times 0.15 = 156$) N(<i>F</i> and <i>LH</i>) = $2000 \times 0.0528 = 960 \times 0.11 = 105.6$) or $P(LH) = 0.078 + 0.0528 = 0.1308$)	A1		Evaluation of ≥1 of these 2 numbers or Addition of these 2 probabilities
	N(LH) = 156 + 105.6 = 2000 × 0.1308 = 261 to 262	A1	4	$ \begin{array}{ccc} 262/2000 & \Rightarrow & A0 \\ AWFW & & (261.6) \end{array} $
	Total		14	

Q	Solution	Marks	Total	Comments
5				Ratios (eg 63:100) are only penalised by 1 mark at first correct answer F marks can only be awarded if 0
(a)	$P(J) = 0.9$ $P(R \mid J) = 0.7$ $P(R \mid J') = 0.2$			
(i)	P(both at trough) = 0.9×0.7 = $0.63 = 63/100$	M1 A1	2	Can be implied by correct answer CAO
(ii)	P(neither at trough) = $(1 - 0.9) \times (1 - 0.2)$ = 0.1×0.8	M1		Can be implied by correct answer
	= 0.08 = 8/100 = 4/50 = 2/25	A1	2	CAO
(iii)	P(at least one at trough) = $(1 - (ii))$			
	= 0.92 = 92/100 = 46/50 = 23/25	B1F	1	F on (ii) or correct answer
(b)(i)	M M' Total D 0.40 0.35 0.75 D' 0.20 0.05 0.25	В1		Both row and column totals ie 0.25 and 0.40; CAO
	Total 0.60 0.40 1.00	B1	2	Three table values
	Notes: Use of Venn or tree diagrams without table completion ⇒ B0 B0 Table not completed on page 13 but completed on page 10 ⇒ max of B1 B1			ie 0.35 and 0.20 and 0.05; CAO
(ii)	Accept answers ÷ 1.00			
(A)	P(neither at gate) = 0.05	B1F	1	F on table or correct answer by 'otherwise'
(B)	P(only Daisy at gate) = 0.35	B1F	1	F on table or correct answer by 'otherwise'
(C)	P(exactly one at gate) = $P(D \cap M') + P(D' \cap M)$	M1		Only correct two values from c's table shown and added Can be implied by correct answer
	0.35 + 0.20 = 0.55	A1F	2	F on table or correct answer by 'otherwise'
	Total		11	

Q	Solution	Marks	Total	Comments
6	1/ 1: 2 225 / 225	D2		ANTENIA (2.25.452)
(a)	$b ext{ (gradient)} = 3.25 ext{ to } 3.26$ $b ext{ (gradient)} = 3.2 ext{ to } 3.3$	B2 (B1)		AWFW (3.25472) AWFW
	θ (gradient) = 3.2 to 3.3	(B1)		Treat rounding of correct answers as ISW
	$a ext{ (intercept)} = 509 ext{ to } 510$	B2		AWFW (509.71698)
	$a ext{ (intercept)} = 507 ext{ to } 513$	(B1)		AWFW
	OR			
	Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy$			720 44472 8460 and 511740
	$\left(\sum y^2\right)$			(6399400) (all 4 attempted)
	or	(M1)		(an + attempted)
	Attempt at S_{xx} and S_{xy} (S_{yy})			1272 and 4140 (435100) (both attempted)
	Attempt at correct formula for <i>b</i>	(1)		(both attempted)
	(gradient)	(m1)		
	$b ext{ (gradient)} = 3.25 ext{ to } 3.26$	(A1)		AWFW
	$a ext{ (intercept)} = 509 ext{ to } 510$	(A1)	4	AWFW
	Accept a and b interchanged only if			If a and b are not identified anywhere in question, then:
	identified correctly by a clearly shown or			$3.25 \text{ to } 3.26 \Rightarrow B1$
	drawn equation			$509 \text{ to } 510 \Rightarrow B1$
(b)				
(i)	Correct line drawn on graph	B2dep		Dep on \geq B1 B1 or \geq A1 A0 in (a)
	(40, 630 to 650) (80, 750 to 790) If B0 but evidence of use of line for ≥ 2			From $x \approx 40$ to 80
	points within range $0 \le x \le 80$ or	(M1)	2	Calc ⁿ or points shown on graph
	'intercept' and means	(1/11)	_	Allow point ('0', 500 to 520)
	•			Graph
(ii)	Outliers / at least E and H identified /	B1		Or equivalent words
	wide scatter (of points) / large residuals Evidence of a (+ ve) relationship or			_
	correlation /model is not appropriate	B1	2	Or equivalent words; none of strong/ negative/trend/etc or unreliable/invalid
	Total and appropriate			month, of thomas one of unionable invalid
(c)				
(i)	Correct two points marked on graph	B1	1	Labels are not required; nor is O
(ii)	h (aradiant) = 11 C	B1		Graph AWRT (11.60377)
(11)	$b ext{ (gradient)} = 11.6$ $a ext{ (intercept)} = 23 ext{ to } 24$	B1		AWRT (11.60377) AWFW (23.77358)
	Correct line on graph		2	
	(40, 480 to 500) (80, 930 to 970)	B1dep	3	Graph Dependent on B1 B1
(***)	No audiano / lago apatro / accello acc	D 1		On a surious land supports
(iii)	No outliers / less scatter / small residuals	B1		Or equivalent words
	Strong(er)/more evidence of a positive			Or equivalent words; must indicate
	link/ relationship or more rapid increase	B1	2	change from (b)(ii) in context;
	(of reaction time with age) or model is			not some/weak/etc or reliable/valid
	more appropriate			References to correlation alone \Rightarrow B0
	Total		14	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\overline{t} - 2s = 6.31 - 2\sqrt{19.3} = -2.48$ to -2.47	B1	· —	AWRT (-2.4764)
	Negative value is impossible for a measurement of time	B1	2	Or equivalent; allow if negative value incorrect or not stated
(ii)	Sample size, $n = 80$ is large $/ > 25$	B1		Indication that given sample is 'large'
	Thus sample mean (\overline{T}) ~ approximately normal due to CLT	B1dep	2	Dependent on previous B1 Requires 'mean' and 'normal' and 'CLT'
(b)	98% (0.98) $\Rightarrow z = $ 2.32 to 2.33	B1 (B1)		AWFW (2.3263) $t_{79}(0.99) = 2.37$ AWRT
	CI for μ is $\overline{t} \pm z/t \times \frac{s}{\sqrt{n}}$	M1		Used Must have \sqrt{n} with $n > 1$
	Thus $6.31 \pm 2.3263 \times \frac{\sqrt{19.3}}{\sqrt{80}}$	A1F		F on z/t only
	Hence $6.31 \pm (1.13 \text{ to } 1.15)$	A 1		CAO and AWFW
	or (5.16 to 5.18, 7.44 to 7.46)	A1		AWFW (5.17, 7.45)
	Note: Use of t gives $6.31 \pm (1.17)$ or $(5.14, 7.48)$	(A1)	4	AWRT
(c)	$\mu_T < 8$ Since CI/UCL < 8 \Rightarrow Yes	B1F		F on (b); must clearly compare 8 with CI/UCL and state a correct follow-through conclusion
	$P(T \le 20) > 95\%$			
	P(T > 20) = 1/80 = 0.01 to 0.013 or $P(T \le 20) = 79/80 = 0.987$ to 0.99	B1		CAO/AWFW; accept eg '1 in 80' B0 for use of normal distribution CAO/AWFW; accept eg '79 in 80'
	P(T > 20) < 0.05 or 5% or $\Rightarrow Yes$ $P(T \le 20) > 0.95 \text{ or } 95\%$	B1dep	3	Dependent on previous B1 A correct comparison must be clearly stated together with clear conclusion Do not accept use of 2% or 98% OE
	Total		11	
	TOTAL		75	