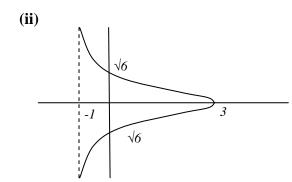
B1


4726

Mark Scheme

M1 Allow any a, b=2 or 4

June 2010

- 1 Derive/quote $g'(x) = p/(1+x^2)$ Attempt f'(x) as $a/(1+bx^2)$ Use $x = \frac{1}{2}$ to set up a solvable equation in *p*, leading to at least one solution Get $p = \frac{5}{4}$ only
- 2 Reasonable attempt at $e^{2x} (1+2x+2x^2)$ Multiply out their expressions to get all terms up to x^2 Get $1+3x+4x^2$ Use binomial, equate coefficients to get 2 solvable equations in *a* and *n* Reasonable attempt to eliminate *a* or *n* Get *n*=9, *a*= $\frac{1}{3}$ cwo
- 3 Quote/derive correct $dx=2dt/(1+t^2)$ Replace all x (not dx=dt) Get 2/(t-1)² or equivalent Reasonable attempt to integrate their expression Use correct limits in their correct integrat Clearly tidy to $\sqrt{3}+1$ from cwo
- **4 (i)** Get a = -2Get b = 6Get c = 1

	M1 A1 AEEF	
	M1 3 terms of the form $1+2x+ax^2$, $a\neq 0$	
	M1 (3 terms) x (minimum of 2 terms) A1 cao Reasonable attempt at binomial, ea M1 involving <i>a</i> and <i>n</i> (<i>an</i> =3, $a^2n(n-1)/2$ M1 A1 cao SC Reasonable f '(<i>x</i>) and f "(<i>x</i>) usin product rule (2 terms) Use their expressions to find f '(0) and f "(0) Get 1+3x+4x ² cao	2=4)
	B1 M1 From their expressions A1	
al	M1 A1 $$ Must involve $\sqrt{3}$ A1 A.G.	
	B1 May be quoted	

B1 May be quoted | (from correct working) B1 May be quoted |

B1 Correct shape in $-1 < x \le 3$ only (allow just top or bottom half)

B1 90⁰ (at *x*=3) (must cross *x*-axis i.e. symmetry)

B1 Asymptote at x = -1 only (allow -1 seen)

B1 $\sqrt{}$ Correct crossing points; $\pm \sqrt{(b/c)}$ from their *b*,*c*

4726

Mark Scheme

June 2010

5 (i) Reasonable attempt at parts Get $e^{x}(1-2x)^{n} - \int e^{x} .n(1-2x)^{n-1}2 dx$	M1 Leading to second integral A1 Or $(1-2x)^{n+1}/(-2(n+1))e^x$
Evidence of limits used in integrated part Tidy to A.G.	$-\int (1-2x)^{n+1}/(-2(n+1))e^{x} dx$ M1 Should show ±1 A1 Allow $I_{n+1} = 2(n+1)I_n - 1$
(ii) Show any one of $I_3=6I_2-1$, $I_2=4I_1-1$, $I_1=2I_0-1$ Get $I_0(=e^{1/2}-1)$ or $I_1(=2e^{1/2}-3)$ Substitute their values back for their I_3 Get $48e^{1/2}-79$	B1 May be impliedB1M1 Not involving nA1
6 (i) Reasonable attempt to differentiate sinh $y = x$ to get dy/dx in terms of y Replace sinh y to A.G.	M1 Allow $\pm \cosh y dy/dx = 1$ A1 Clearly use $\cosh^2 - \sinh^2 = 1$ SC Attempt to diff. $y = \ln(x + \sqrt{x^2 + 1})$ using chain rule M1 Clearly tidy to A.G. A1
(ii) Reasonable attempt at chain rule Get $dy/dx = a \sinh(a\sinh^{-1}x)/\sqrt{x^2+1}$ Reasonable attempt at product/quotient Get d^2y/dx^2 correctly in some form Substitute in and clearly get A.G.	M1 To give a product A1 M1 Must involve sinh and cosh A1 $\sqrt{\text{From } dy/dx} = k \sinh(a \sinh^{-1}x)/\sqrt{(x^2+1)}$ A1 SC Write $\sqrt{(x^2+1)}dy/dx = k \sinh(a \sinh^{-1}x)$ or similar Derive the A.G.
7 (i) Get 5.242, 5.239, 5.237 Get 5.24	$B1\sqrt{Any 3(minimum)}$ correct from previous value B1 Allow one B1 for 5.24 seen if 2 d.p.used
(ii) Show reasonable staircase for any region Describe any one of the three cases Describe all three cases	
(iii) Reasonable attempt to use log/expo. rule Clearly get A.G.Attempt f'(x) and use at least once in correct N-R formula Get answers that lead to 1.31	A1 M1
Oct answers that lead to 1.51	A1 Minimum of 2 answers; allow truncation/rounding to at least 3 d.p.
(iv) Show f '(ln36) = 0 Explain why N-R would not work	B1B1 Tangent parallel to Ox would not meet Ox again or divide by 0 gives an error

4726

- **8** (i) Use correct definition of $\cosh x$ Attempt to cube their definition involving e^x and e^{-x} (or e^{2x} and e^x) Put their 4 terms into LHS and attempt to simplify Clearly get A.G.
 - (ii) Rewrite as $k \cosh 3x = 13$ Use ln equivalent on 13/k
 - Get $x = (\pm) \frac{1}{3} \ln 5$ Replace in cosh *x* for *u* Use $e^{a\ln b} = b^a$ at least once Get $\frac{1}{2}(5^{\frac{1}{3}}+5^{-\frac{1}{3}})$
- **9** (i) Attempt integral as $k(2x+1)^{1.5}$ Get 9 Attempt subtraction of areas Get 3
 - (ii) Use $r^2 = x^2 + y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ **B**1 Eliminate x and y to produce quadratic equation (=0) in $r (\text{or } \cos\theta)$ Solve their quadratic to get r in terms of θ (or vice versa) Clearly get A.G. Clearly show $\theta_1(at B) = \tan^{-1}3/4$ and θ_2 (at A) = π
 - (iii) Use area = $\frac{1}{2}\int r^2 d\theta$ with correct *r* Rewrite as $k \operatorname{cosec}^4(\frac{1}{2}\theta)$ Equate to their part (i) and tidy Get 24

Mark Scheme

June 2010

B 1	

M1 Must be 4 terms

M1 A1

A1

M1

M1

A1

SC Allow one B1 for correct derivation from $\cosh 3x = \cosh(2x+x)$

M1 M1 Allow $\pm \ln \operatorname{or} \ln(13/k \pm \sqrt{(13/k)^2 - 1})$ for their k or attempt to set up and solve quadratic via exponentials

M1 A1 cao M1 Their answer – triangle A1 $\sqrt{}$ Their answer – 6 (>0)

M1

A1√ A1 *r*>0 may be assumed

B1

- SC Eliminate y to get r in terms of x only M1 Get r = x + 1A1 SC Start with $r=1/(1-\cos\theta)$ and derive cartesian
- B1 cwo; ignore limits
- M1 Not just quoted
- M1 To get $\int =$ some constant
- A1 A.G.