4723 Mark Scheme January 2008

4723 Core Mathematics 3

1	(i)	Show correct process for composition of functions	M1	numerical or algebraic; the right way round
		Obtain (-3 and hence) -23	A1 2	
	(ii)	Either: State or imply $x^3 + 4 = 12$	B 1	
		Attempt solution of equation involving x^3 Obtain 2	M1 A1 3	as far as $x = \dots$ and no other value
		Or: Attempt expression for f^{-1} Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$	M1 A1	involving x or y ; involving cube root
		Obtain 2	A1 (3) and no other value
2	(i)	Obtain correct first iterate 2.864	B1	or greater accuracy 2.864327; condone 2 dp here and in working
		Carry out correct iteration process Obtain 2.877	M1 A1 3	to find at least 3 iterates in all after at least 4 steps; answer required to exactly 3 dp
		$[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.876]$	$6661 \rightarrow 2.$	876800]
	(ii)	State or imply $x = \sqrt[3]{31 - \frac{5}{2}x}$	B 1	
		Attempt rearrangement of equation in <i>x</i>	M1	involving cubing and grouping non-zero terms on LHS
		Obtain equation $2x^3 + 5x - 62 = 0$	A1 3	or equiv with integers
3	(a)	State correct equation involving $\cos \frac{1}{2}\alpha$	В1	such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$
		Attempt to find value of α Obtain 151	M1 A1 3	or using correct order for the steps or greater accuracy; and no other values between 0 and 180
	(b)	State or imply $\cot \beta = \frac{1}{\tan \beta}$	B1	
		Rearrange to the form $\tan \beta = k$	M1	or equiv involving $\sin \beta$ only or $\cos \beta$ only; allow missing \pm
		Obtain 69.3 Obtain 111	A1 A1 4	or greater accuracy; and no others between 0 and 180
4	(i)	Obtain derivative of form $kh^5(h^6 + 16)^n$	M1	any constant k ; any $n < \frac{1}{2}$; allow if -4 term retained
		Obtain correct $3h^5(h^6 + 16)^{-\frac{1}{2}}$	A1 2	or (unsimplified) equiv; no –4 now
		Substitute to obtain 10.7	A1 3	or greater accuracy or exact equiv
	(ii)	Attempt multn or divn using 8 and answer from (i) Attempt 8 divided by answer from (i) Obtain 0.75	M1 A1√ 3	or greater accuracy; allow 0.75 ± 0.01 ; following their answer from (i)

4723 Mark Scheme January 2008

5 (a) Obtain integral of form $k(3x+7)^{10}$ M1 any constant k Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3} (3x+7)^{10}$ A1 or equiv Obtain (simplified) $\frac{1}{30} (3x+7)^{10} + c$ A1 3

Either: Refer to translation and reflection

State translation by 1 in negative *x*-direction

Attempt correct process for finding at least one value

6 (i)

(iii)

- (b) State $\int \pi (\frac{1}{2\sqrt{x}})^2 dx$ B1 or equiv involving x; condone no dxIntegrate to obtain $k \ln x$ M1 any constant k involving π or not; or equiv such as $k \ln 4x$ or $k \ln 2x$ Obtain $\frac{1}{4}\pi \ln x$ or $\frac{1}{4}\ln x$ or $\frac{1}{4}\ln 4x$ or $\frac{1}{4}\ln 4x$ A1

 Show use of the $\log a \log b$ property M1 not dependent on earlier marks
- Obtain $\frac{1}{4}\pi \ln 2$ A1 5 or similarly simplified equiv
- State reflection in x-axis

 Or: Refer to translation and reflection
 State reflection in y-axis
 State translation by 1 in positive x-direction

 State translation by 1 in positive x-direction

 State translation by 1 in positive x-direction

 terminology
 using correct terminology
 in either order; allow clear equivs

 B1
 (3) with order reflection then translation clearly intended

B1

B1

M1

in either order; allow clear equivs

or equiv but now using correct

as far as x = ...; accept decimal

- (ii) Show sketch with attempt at reflection of 'negative' part in x-axis

 Show (more or less) correct sketch

 M1 and curve for 0<x<1 unchanged
 A1 2 with correct curvature
- equivs (degrees or radians) or expressions involving $\sin(\frac{1}{3}\pi)$ Obtain $1 \frac{1}{2}\sqrt{3}$ A1 or exact equiv
 - Obtain $1 + \frac{1}{2}\sqrt{3}$ A1 3 or exact equiv; give A1A0 if extra incorrect solution(s) provided
- 7 (i) Attempt use of product rule for xe^{2x} M1 obtaining ... + ...

 Obtain $e^{2x} + 2xe^{2x}$ A1 or equiv; maybe within QR attempt Attempt use of quotient rule M1 with or without product rule

 Obtain unsimplified $\frac{(x+k)(e^{2x}+2xe^{2x})-xe^{2x}}{(x+k)^2}$ A1
 - Obtain $\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$ A1 5 AG; necessary detail required
 - Attempt use of discriminant (ii) **M1** or equiv Obtain $4k^2 - 8k = 0$ or equiv and hence k = 2**A1** Attempt solution of $2x^2 + 2kx + k = 0$ **M1** using their numerical value of k or solving in terms of k using correct formula Obtain x = -1**A1** Obtain $-e^{-2}$ A1 5 or exact equiv

11

4723 Mark Scheme January 2008

8 (i)	State or imply $h = 1$ Attempt calculation involving attempts at y values	B1 M1	addition with each of coefficients 1, 2, 4 occurring at least once; involving at least 5 <i>y</i> values
	Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1 Obtain 91	A1 4	any constant a
(ii)	State $e^{x \ln 2}$ or $k = \ln 2$	B 1	allow decimal equiv such as $e^{0.69x}$
	Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$	M1	any constant k or in terms of general k
	Obtain $\frac{1}{\ln 2} (e^{6\ln 2} - e^0)$	A1	or exact equiv
	Simplify to obtain $\frac{63}{\ln 2}$	A1 4	allow if simplification in part (iii)
(iii)	Equate answers to (i) and (ii)	M1	provided ln 2 involved other than in power of e
	Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$	A1 2	AG; necessary correct detail required
0 (3)	State at least one of $\cos \theta \cos 60 - \sin \theta \sin 60$		
9 (i)	and $\cos\theta\cos30 - \sin\theta\sin30$ Attempt complete multiplication of identities of form	B1	
	$\pm \cos \cos \pm \sin \sin$	M1	with values $\frac{1}{2}\sqrt{3}$, $\frac{1}{2}$ involved
	Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta$	M1	
	Obtain $\sqrt{3} - 2\sin 2\theta$	A1 4	AG; necessary detail required
(ii)	Attempt use of 22.5 in right-hand side	M1	
	Obtain $\sqrt{3} - \sqrt{2}$	A1 2	or exact equiv
(iii)	Obtain 10.7	B1	or greater accuracy; allow ±0.1

M1

A1 3

A1 3

Obtain 79.3

Attempt correct process to find two angles

Obtain both of $k > \sqrt{3} + 2$, $k < \sqrt{3} - 2$ Obtain complete correct solution M1 A1 condoning decimal equivs, $\leq \geq$ signs

now with exact values and unambiguously stated

from values of 2θ between 0 and 180

or greater accuracy and no others between 0 and 90; allow ± 0.1