UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	22

1 (a)
$$\frac{V}{t} = \frac{\pi P r^4}{8 C l}$$

 $C = [\pi \times 2.5 \times 10^3 \times (0.75 \times 10^{-3})^4] / (8 \times 1.2 \times 10^{-6} \times 0.25)$ C1
 $= 1.04 \times 10^{-3} \text{ Nsm}^{-2}$ A1 [2]

(b)
$$4 \times \%r$$
 C1
 $\%C = \%P + 4 \times \%r + \%V/t + \%l$
 $= 2\% + 5.3\% + 0.83\% + 0.4\% (= 8.6\%)$ A1
 $\Delta C = \pm 0.089 \times 10^{-3} \text{ N s m}^{-2}$ A1 [3]

(c)
$$C = (1.04 \pm 0.09) \times 10^{-3} \text{ Ns m}^{-2}$$
 A1 [1]

2 (a) (i)
$$v^2 = u^2 + 2as$$

= $(8.4)^2 + 2 \times 9.81 \times 5$
= 12.99 m s^{-1} (allow 13 to 2 s.f. but not 12.9) C1

(ii)
$$t = (v - u) / a$$
 or $s = ut + \frac{1}{2}at^2$
= $(12.99 - 8.4) / 9.81$ or $5 = 8.4t + \frac{1}{2} \times 9.81t^2$ M1
 $t = 0.468$ s

(b) reasonable shape M1 suitable scale A1 correctly plotted
$$1^{st}$$
 and last points at $(0,8.4)$ and $(0.88-0.96,0)$ with non-vertical line at $0.47\,\mathrm{s}$ A1 [3]

(c) (i) 1. kinetic energy at end is zero so
$$\Delta KE = \frac{1}{2} mv^2$$
 or $\Delta KE = \frac{1}{2} mu^2 - \frac{1}{2} mv^2$ C1 = $\frac{1}{2} \times 0.05 \times (8.4)^2$ = (-) 1.8 J A1 [2]

2. final maximum height =
$$(4.2)^2 / (2 \times 9.8) = (0.9 \text{ (m)})$$

change in PE = $mgh_2 - mgh_1$ C1
= $0.05 \times 9.8 \times (0.9 - 5)$ C1
= $(-) 2.0 \text{ J}$ A1 [3]

- 3 (a) A body continues at rest or constant velocity unless acted on by a resultant (external) forceB1 [1]
 - (b) (i) constant velocity/zero acceleration and therefore no resultant force M1 no resultant force (and no resultant torque) hence in equilibrium A1 [2]

(ii) component of weight =
$$450 \times 9.81 \times \sin 12^{\circ} (= 917.8)$$
 C1
tension = $650 + 450 g \sin 12^{\circ} = (650 + 917.8)$ C1
= $1600 (1570) N$ A1 [3]

	Page	3	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012 9702		22	
	(iii)		k done against frictional force or friction between log and out power greater than the gain in PE / s	l slope	M1 A1	[2]
4	CL	ırrent =	istance = 20 (k Ω) = 12 / 20 (mA) or potential divider formula 2 / 20] × 12 = 7.2 V		C1 C1 A1	[3]
	to	tal resi	resistance = 3 (k Ω) stance 8 + 3 = 11 (k Ω) = 12 / 11 × 10 ³ = 1.09 × 10 ⁻³ or 1.1 × 10 ⁻³ A		C1 C1 A1	[3]
	(c) (i)	,	R resistance decreases I resistance (of circuit) is less hence current increases		M1 A1	[2]
	(ii)	,	stance across XY is less proportion of 12 V across XY hence p.d. is less		M1 A1	[2]
5	(a) E	= stres	ss / strain		B1	[1]
	(b) (i		iameter / cross sectional area / radius riginal length		B1	[1]
	(ii)	mea	asure original length with a <u>metre</u> ruler / tape asure the <u>diameter</u> with micrometer (screw gauge) as with with with dispers		B1 B1	[2]
	(iii)	ene	rgy = $\frac{1}{2}$ Fe or area under graph or $\frac{1}{2}$ kx^2 = $\frac{1}{2}$ × 0.25 × 10 ⁻³ × 3 = 3.8 × 10 ⁻⁴ J		C1 A1	[2]
			ine through origin below original line ugh (0.25, 1.5)		M1 A1	[2]
6	Sa	(a) two waves travelling (along the same line) in opposite directions overlap/meet same frequency / wavelength			M1 A1	
			t displacement is the sum of displacements of each wave s nodes and antinodes	e /	B1	[3]
	a	djustme	us: source of sound + detector + reflection system ent to apparatus to set up standing waves – how recognisments made to obtain wavelength	ised	B1 B1 B1	[3]
	(c) (i) at le	east two nodes and two antinodes		A1	[1]
	(ii)	c = i	e to node = $\lambda / 2$ = 34 cm (allow 33 to 35 cm) $f\lambda$ 340 / 0.68 = 500 (490 to 520) Hz		C1 C1 A1	[3]

Mark Scheme: Teachers' version

Page 4

Paper

Syllabus

		GCE AS/A LEVEL – May/June 2012 9702	22	
7	(a)	W = 1 and X = 0 Y = 2 Z = 55	A1 A1 A1	[1] [1] [1]
	(b)	explanation in terms of mass – energy conservation energy released as gamma or photons or kinetic energy of products or	B1	
		em radiation	B1	[2]