CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		ge 2	Mark Scheme	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2013	9702	21		
1	(a)	the wir when 1	e returns to its original length (not 'shape') he load is removed		M1 A1	[2]	
	(b)	energy energy energy	T: N m / kg m ² s ⁻² and volume m ³ 7 / volume: kg m ² s ⁻² / m ³ 7 / volume: kg m ⁻¹ s ⁻²		C1 M1 A0	[2]	
	(c)	ε has no units <i>E</i> : kg m s ⁻² m ⁻² units of RHS: kg m ⁻¹ s ⁻² = LHS units / satisfactory conclusion to show <i>C</i> has no units					
2	(a)	mass i matter	s the property of a body resisting changes in motion / qua in a body / measure of inertia to changes in motion	antity of	B1		
		weight or grav	is the force due to the gravitational field/force due to gravitational force	vity	B1	[2]	
		Allow	/2 for 'mass is scalar weight is vector'				
	(b)	(i) ar te	row vertically down through O nsion forces in correct direction on rope		B1 B1	[2]	
		(ii) 1.	weight = $mg = 4.9 \times 9.81$ (= 48.07) 69 sin $\theta = mg$ $\theta = 44.(1)^{\circ}$ scale drawing allow ± use of cos or tan 1/3 only	= 2°	C1 C1 A1	[3]	
		2.	$T = 69 \cos \theta$ = 49.6 / 50 N scale drawing 50 ±2	(2/2) 50 ±4 (1/2	C1 ?) A1	[2]	
		cc fu cc	rrect answers obtained using scale diagram or triangle of I marks <i>s in 1. then sin in 2. (2/2)</i>	f forces will score	•		
3	(a)	(a) loss in potential energy due to decrease in height (as P.E. = mgh) gain in kinetic energy due to increase in speed (as K.E. = $\frac{1}{2} mv^2$)					
		increase in thermal energy due to work done against air resistance loss in P.E. equals gain in K.E. and thermal energy				[3]	

群尧咨询

	Page 3		5	Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9702	21	
	(b)	(i)	kine	etic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.150 \times (25)^2$ = 46.875 = 47 J		C1 C1 A1	[3]
		(ii)	1.	potential energy (= <i>mgh</i>) = 0.150 × 9.81 × 21 loss = KE – <i>mgh</i> = 46.875 – (30.9) = 15.97 = 16 J		C1 C1 A1	[3]
			2.	work done = 16 J work done = force × distance F = 16 / 21 = 0.76 N		C1 A1	[2]
4	(a)	pre	ssur	e = force / area (normal to force)		A1	[1]
	(b)	mol mol (for refe	lecul lecul ce ei erenc	es/atoms/particles in (constant) random/haphazard motic es have a <u>change</u> in momentum when they collide with <u>th</u> xerted on molecules) therefore force on the walls the to average force from many molecules/many collisions	on <u>ne walls</u>	B1 M1 A1 A1	[4]
	(c)	ela: terr	stic c ipera	ollision when <u>kinetic</u> energy conserved iture constant for gas		B1 B1	[2]
5	(a)	way coh pat san	ves d leren h diff ne di	iverlap / meet / superpose ice / constant phase difference (<i>not constant</i> λ or frequer ierence = 0, λ , 2λ or phase difference = 0, 2π , 4π rection of polarisation/unpolarised	асу)	(B1) (B1) (B1) (B1) max. 3	[3]
	(b)	$\begin{array}{l} \lambda = \\ f = \\ \lambda = \\ \end{array}$	v / f 12 × 3 × 0.02	: 10 ⁹ Hz 10 ⁸ / 12 × 10 ⁹ <i>(any subject)</i> 25 m		C1 C1 M1 A0	[3]
	(c)	ma: <u>sev</u>	ximu <u>eral</u>	m at P minima or maxima between O and P		B1 B1	
		or 7	⁷ ma	xima / 6 minima including O and P		B1	[3]
	(d)	slits slits (<i>r</i> Allo	s ma s put not ju ow til	de narrower closer together <i>ist 'make slits smaller')</i> ting the slits M1 and explanation of axes of rotation A1		B1 B1	[2]

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9702	21	
6	(a) (i) che	mical to electrical		B1	[1]
	(ii) elec	ctrical to thermal / heat or heat and light		B1	[1]
	(b) (i) (P _B	=) <i>EI</i> or $I^2(R_1 + R_2)$		A1	[1]
	(ii) (<i>P</i> _R	=) $I^2 R_1$		A1	[1]
	(c) R = ρl/	A or clear from the following equation		B1	
	ratio = I^{4}	${}^{2}R_{1}/I^{2}R_{2} = \frac{\rho l/\pi d^{2}}{\rho(2l)/\pi(2d)^{2}}$ or R_{1} has 8× resistance of R_{2}		C1	
		= 8 or 8:1		A1	[3]
	(d) P = V ² / (V or E t	<i>R</i> or <i>E² / R</i> he same) hence ratio is 1/8 or 1:8 = 0.125 (allow ecf fro	om (c))	C1 A1	[2]
7	(a) the majo or were	prity/most went straight through deviated by small angles		B1	
	a very si small an	mall proportion/a few were deviated by large angles gles described as < 10° <u>and</u> large angles described as >	>90°	B1 B1	[3]
	(b) most of mass <u>an</u> correct l	the atom is empty space/nucleus very small compared w <u>ad</u> charge concentrated in (very small) nucleus inks made with statements in (a)	vith atom	B1 B1 B1	[3]