Ques	Question		Marking details	Marks Available
1.	(a)	(i)	$pV = \frac{1}{3}Nm\overline{c^2}$ or $p = \frac{1}{3}\rho\overline{c^2}$ used. (1) Correct use of N and m or $\rho = 11.0$ kg m ⁻³ (1) $c_{r.m.s.} = 286$ m s ⁻¹ (1)	3
		(ii)	$M_r = \frac{1.39 \times 10^{-25}}{1.66 \times 10^{-27}} $ (1) = 84 (1)[or $M_r = m/g \times N_A$] [No unit penalty] [N.B. Alternatives available: 1 mark method; 1 mark answer – factor of 10 ³ error \rightarrow method mark available]]	2
		(iii)	$pV = nRT \underline{\text{used}} (1)$ $n = \frac{1.7 \times 10^{20}}{6.02 \times 10^{23}} (1) \text{ [N.B. The mark might be earned in (ii)]}$ T = 275 K (1)	3
	(b)		Gets bigger (1) because pressure decreases [and <i>T</i> is ~ constant] (1). [Accept: because it collects dissolved gas(es) or because temperature increases as bubble rises]]	2
				[10]
2.	<i>(a)</i>		$\Delta V = 0$ / no change in volume	1
	(b)		Work done = area under graph or by impl. [i.e. area calc attempt] (1) Work done [= $[-]1.5 \times 10^5 \times 4.0 \times 10^{-3}$]= [-] 600 J (1) Minus sign (1) [free-standing mark] [NB Any reasonable method of determining area, including counting squares \checkmark]	3
	(c)		 ΔU: change [or increase] in internal energy of(1) Q: heat supplied ["heat in" etc. – direction must be indicated] to(1) W: work done by(1) [NB: not "by or on"] [Subtract 1 mark if "gas" or "system" not mentioned at least once]. 	3
	(<i>d</i>)		Attempt at area inside the cycle or Area $_{BC}$ – Area $_{DA}$ (1) Area / W [= 0.675×10 ⁵ × 4.0 × 10 ⁻³ – 600] = – 350 J (1) $\therefore Q = -350 J$ (1) [NB final step must be explicit – leaving answer for W doesn't gain the final mark]	3
				[10]

PH4 Mark scheme –	January 2011
-------------------	--------------

Question		Marking details	Marks Available
3		Sample answer: Microwave oven [although away from central resonance] (1). Driving force: the [e-m fields of the] microwaves (1) Oscillating System: rotation [accept vibration] of <u>water</u> molecules (1) Result: Increased [accept large amplitude] rotational k.e. (1) General scheme: 4 distinct points needed $\rightarrow 4 \times (1)$ Diagram / statement of application [e.g. bridge, car rattle] \checkmark Description of plausible oscillating driving force \checkmark Description of plausible system \checkmark Large <u>amplitude</u> because of same frequency [or graph showing	4
		resonance, with labelled axes] \checkmark	[4]
4.	(a)	$r_{1} = \frac{m_{2}}{m_{1} + m_{2}} d \text{ used } [\text{or } m_{1}r_{1} = m_{2}r_{2}] (1)$ $r_{1} = 7.43 \times 10^{8} \text{ m} (1)$	2
	(b)	$\frac{\text{Use of relevant eq}^{n}}{T = 2\pi \sqrt{\frac{d^{3}}{G(m_{1} + m_{2})}}} \text{ or } 2\pi \sqrt{\frac{d^{3}}{GM}} \text{ or } \frac{GM}{r^{2}} = \frac{mv^{2}}{r} (1)$ $T = 3.75 \times 10^{8} \text{ s} (1)$	
	(<i>c</i>)	Division by $(24 \times 60 \times 60 \times 365[.25])$ or equiv (1) [=11.88 year] $v = \frac{2\pi r}{T}$ [or $v = \omega r$ and $\omega = \frac{2\pi}{T}$] (1)	3
		$v = \frac{2\pi \times \text{ answer } (a)}{\text{answer } (b)}$ (1) [= 12.46 m s ⁻¹]	2
	(<i>d</i>)	Doppler shift calculated: $\frac{\Delta\lambda}{\lambda} = \frac{\nu}{c} \rightarrow \Delta\lambda = \frac{\nu\lambda}{c} = 5.3 \times 10^{-14} \text{ m} (1)$ Upper λ value labelled: 1.28 µm / $\lambda_{[0]} + 5.3 \times 10^{-14} \text{ m} (1)$ Lower λ value labelled: 1.28 µm / $\lambda_{[0]} - 5.3 \times 10^{-14} \text{ m} (1)$ [Alternatively for 2 nd and 3 rd marks, indication on the graph that the amplitude of the variation is 5.3×10^{-14} m, e.g. peak to peak $\Delta\lambda$ is shown as 10.6×10^{-14} m]	
		Period labelled: 12 years / 3.75×10^8 s (1)	4
			[11]

更多咨询请登录

Question		Marking details	Marks Available
5.	(a)	[centripetal force =] $m\omega^2 r$ [or $\omega^2 r$ and ma] (1) $F = 32.5 \times 1.4^2 r$ [= 63.7 r] (1) Friction [of the surface on the shoes] provides centripetal force [or is the resultant etc.] (1) [Accept $F = m\omega r^2$ for 1 st and 3 rd marks as F is defined in the question]	3
	(b)	63.7 $r = 114$ [N] (1) r = 1.79 and relevant comment, e.g. if r greater, $F > 114$ N (1) [Alt: Subst $r = 1.8$ m and comment that $F > 114$ N]	2
	(<i>c</i>)	$T = \frac{2\pi}{\omega}$ [or by impl.] (1) = $\left[\frac{2\pi}{1.4}\right]$ =] 4.49 s (1)	2
	(<i>d</i>)	$v = \omega A$ [or by impl.] (1) = [1.4 × 1.8 =] 2.52 m s ⁻¹ (1) [If $v = A\omega \cos \omega t$, or equiv, then $\cos \omega t = 1$ must be stated for 1 st mark]	2
	(e)	$a = \omega^2 A$ [or by impl.] (1) = [1.4 ² × 1.8 =] 3.53 m s ⁻² (1) occurs at the extremities / when $x = \pm A$ etc. (1) [If $a = A \omega^2 \cos \omega t$, or equiv, then $\cos \omega t = 1$ must be stated for 1 st mark]	3
	(f)	At least one cycle of wave drawn with correct amplitude [1.8 m e.c.f.] (1) Reasonable shape of sinusoid + correct period + correct phase [i.e. sin wave] (1)	2
	(g)	Use of $-1.00 = \sin \omega t$ (1) $1.4t = \sin^{-1} \left(\frac{-1}{1.8}\right)$ (1) [= -0.59] t = -0.42 s (1) [Mysterious loss of $-$ sign loses 1 mark] $t = \frac{T}{1.8} + 0.42$ [2.42 s] and $t = T = 0.42$ [4.07 s] (1)	4
		$t_1 = \frac{T}{2} + 0.42 [2.42 \text{ s}] \text{ and } t_2 = T - 0.42 [4.07 \text{ s}] (1)$	[18]

更多咨询请登录

Que	stion	Marking details	Marks Available
6.	<i>(a)</i>	$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{519.8 \times 10^{-9}} = 1.275 \times 10^{-27} \text{ kg m s}^{-1} / \text{ Ns ((unit))}$	1
	(b)	$p = mv = 9.11 \times 10^{-31} \times 1400 (1)$ = 1.275 × 10 ⁻²⁷ kg m s ⁻¹ ∴ momenta cancel or sum = 0. [Comment needed] (1)	2
	(<i>c</i>)	Yes – momenta cancel afterwards also. [i.e. Yes + sensible comment, e.g. reflection symmetry, e.g. wavelength and speed unchanged. Accept mention of C of M frame]	1
	(<i>d</i>)	Loss of photon energy (1) = gain in kinetic energy [of electron] (1) ["Photon energy decreases; Electron KE increases" \rightarrow 1 mark]	2
			[6]
7.	(a)	<u>Use</u> of $\frac{GMm}{r^2}$ (1)[or by impl.] = $\frac{6.67 \times 10^{-11} \times 1.99 \times 10^{30} \times 1.31 \times 10^{22}}{(7.38 \times 10^{12})^2}$ Force = 3.19 × 10 ¹⁶ N (1)	2
	(b)	$\frac{GM_1}{r_1^2} = \frac{GM_2}{r_2^2} (1)$ Alt: $\frac{GM_1}{r_1^2} = \frac{GM_2}{(d_1 - r_1)^2} (1)$ $\frac{r_2^2}{r_1^2} = \frac{m_2}{m_1} (1)$ M_1(d - r_1)^2 = M_2 r_1^2 (1) remaining algebra (1) r_2 = 0.11 - 10 ⁻⁵ (1)	
		$\frac{r_2}{r_1} = 8.11 \times 10^{-5} (1) \rightarrow r_2 = 6 \times 10^8 \text{ m} (1)$	4
	(c)	GPE = $[-]\frac{GMm}{r}$ [or $V = [-]\frac{GM}{r}$ and GPE = $m\Delta V$] (1) Attempt at calculating 2 PEs or 2 Vs (1) [PEs: -2.36×10^{29} and -3.92×10^{29} , Vs: 1.8×10^7 and 3.0×10^7] $\Delta E_k = [-]\Delta E_p = 1.56 \times 10^{29}$ J (1) e.c.f. i.e. the mark is for equating the gain of KE to the loss in PE.	3
			[9]

Que	Question		Marking details	Marks Available
8.	(a)		At least 2 field lines shown with correct direction (1) At least two equipotentials surfaces shown [reasonable sketch circles centred on -Q] (1) Labelling (1)	
				3
	(b)	(i)	<u>Use</u> of $F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$ (1) = 5.62 N (1)	2
		(ii)	<u>Use</u> of $V = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{r}$ and $\Delta E_p = q\Delta V$ or use of $E_p = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r}$ (1) $\Delta E_p = [-] 0.45 \text{ J}$ (1) $\therefore E_{k \text{ [max]}} = 0.45 \text{ J}$ [explicit] (1)[NB Free-standing mark – awarded if KE gain = PE loss stated]	3
	(c)		<u>Use</u> of $E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} (1) = 2.81 \times 10^6 \text{ V m}^{-1}(1)$ Horizontal cpts cancel \therefore direction down [could be in diagram] or stated algebraically, e.g. $2E \cos \theta(1)$	
			$E_{\rm res} [= 2E\sin\theta = 2 \times \frac{3}{5} \times 2.81 \times 10^6]= 8.6 \times 10^6 {\rm V m^{-1} \ [or N C^{-1}]} \ (1)$	4
			5 ((unit))	[12]

GCE Physics MS - January 2011