Question			Marking details	Marks Available
1	(a)		Acceleration \propto displacement [from a fixed point] (1) and directed towards a fixed point (1) Or $a = [-]\omega^2 x$ (1); - sign and defined a and x, ω^2 a constant(1)	2
	<i>(b)</i>	(i)	$T = 2\pi \sqrt{\frac{m}{k}} \text{ [or by impl.](1)}$ $T^{2} = 4\pi^{2} \frac{m}{k} \text{ i.e. correct squaring [or by impl.](1)}$	
			m = 0.127 kg(1)	3
		(ii)	$\omega \left[= \frac{2\pi}{T} \right] = \frac{2\pi}{0.42 \text{ s}} \checkmark [= 14.96 \text{ [rad] s}^{-1}]$	1
	(c)	(i) (ii)	$v_{\text{max}} = \omega A (\text{subs})(1) = 0.194 \text{ m s}^{-1} [\text{accept } 0.19 \text{ or } 0.20] (1)$ $a_{\text{max}} = [-]\omega^2 A (\text{subs})(1) = 2.91 \text{ m s}^{-2} (1)$ [no penalty for minus sign in answer; no 2 nd penalty for 10 ² error]	2 2
	(d)	(i) (ii)	$\begin{bmatrix} T_{/4} \text{ or } 0.105 \text{ s} \\ \textbf{Either} \\ a = [-] 2.91 \sin \omega t (1) \text{ [or impl.]} \\ \omega t = \sin^{-1} \left(\frac{2.9}{2.91}\right) (1) \text{ [or impl.]} \\ t = 0.054 \text{ s} (1) \end{bmatrix} \begin{bmatrix} \text{or} \\ a = -\omega^2 x \rightarrow x = 0.0094 \text{ m} (1) \\ 0.0094 = 0.13 \sin \omega t (\textbf{subs}) (1) \\ t = 0.054 \text{ s} (1) \end{bmatrix}$	1
			$[-0.054 \text{ s loses } 2^{\text{nd}} \text{ mark, or equivalent wrong sector slip, e.g.}$ 4.2 - 0.054 or even 2.1 - 0.054 etc.]	3
				[14]
2	<i>(a)</i>		$p\left[=\frac{h}{\lambda}\right] = \frac{6.63 \times 10^{-34} \text{ J s}}{620 \times 10^{-9} \text{ m}} (\checkmark) [= 1.07 \times 10^{-27} \text{ kg m s}^{-1}]$	1
	(b)		$1.1 \times 10^{-27} = [\pm] \ 1.1 \times 10^{-27} + mv \ [i.e. \ accept \ incorrect \ sign] \ (1)$ $2.2 \times 10^{-27} = 1.67 \times 10^{-27} \ v \ (1)$ $v = 1.28 \ ms^{-1} \ (1)$	
			$[mv = 1.1 \times 10^{-27} \rightarrow v = 0.64 \text{ m s}^{-1} - 1 \text{ mark only}]$	3
	(c)	(i)	more energy after collision (1) since photon energies are the same / energy increased by hydrogen KE or $\frac{1}{2}mv^2$ (1)	2
		(ii)	reflected photon has longer wavelength or red shift occurs [or converse argument or frequency argument]	1
				[7]

Question			Marking details		Marks Available
3	(a)		$pV = nRT (\mathbf{subs})(1)$ $n = \frac{60 \times 10^3 \times 0.05}{8.31 \times 278} (1) [=1.2986]$		2
	(b)	(i)	Either $p = \frac{1}{3}\rho c^2 (1)^*$ $\rho = \frac{m}{V} \text{ or } \frac{0.171}{0.05} (1)$ $c_{\text{rms}} = 229 \text{ m s}^{-1} (1)$ * Mark lost for incorrect substitution taken.	or $pV = \frac{1}{3} Nm c^{2}$ (1) $v = 0.05 \text{ m}^{3}$ and $Nm = 0.171$ (1) $c_{\text{rms}} = 229 \text{ m s}^{-1}$ (1) on (e.g. of ρ) unless final root	3
		(ii)	Division of <i>m</i> by 1.3 (1) Molar mass =0.132 kg / 132 g ((ur	it)) (1)	2
					[7]
4.	(a)	(i)	$\Delta U - \underline{\text{change}} / \underline{\text{increase}} \text{ in internal energy}$ $Q - Heat \text{ supplied } \underline{\text{to the gas /system}}$ $W - Work \underline{\text{done by the gas / system}}$ Marking - all <i>italic</i> terms (1); all <u>underlined</u> terms (1)		2
	(0)		$= 60\ 000 \times 50 \times 10^{-3}$ = 3\ 000 J (1)		2
		(ii)	Use of ΔT or $U_2 - U_1(1)$ $\Delta U = 4500 \text{ J}(1)$		2
	(c)	(i)	0		1
		(ii)	Temperature decreases / gas cools Heat flows out / Q -ve (1) [not 'de	$\Delta U - ve(1)$ (1) ecrease in heat']	2
	(d)	(i)	Returns to same temperature / poir [or internal energy depends only o	eturns to same temperature / point / p , V , $T(1)$ or internal energy depends only on T [accept p , V , T]]	
		(ii)	attempt at closed area or AB – CD W [= 20 000 × 0.05] = 1000 J (1) Q = 1000 J (1)	(1) [or by impl.]	3
			$\mathcal{L} = 1000 \text{ J}(1)$		[13]

Question			Marking details	Marks Available
5	(a)	(i)	$g = \frac{GM}{r^2}$ (1) (subs) = 1.63 m s ⁻² / N kg ⁻¹ ((unit)) (1)	2
		(ii)	$F = mg \text{ or } F = \frac{GMm}{r^2} \text{ [or by impl.] (1)}$	
			F = 3.25 N(1)	2
	<i>(b)</i>	(i)	KE = $[\frac{1}{2}mv^2]$ = 1.96 MJ	1
		(ii)	Gravitational PE = $[-]\frac{GMm}{r}$ (subs)[or $V = -\frac{GM}{r}$ and PE = mV] (1)	
			$= -\frac{6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 2}{1.74 \times 10^{6}} (1) [= -5.635 \text{ MJ}]$ [no sign penalty here]	2
		(iii)	Total incident energy = $-3.7 \text{ MJ} [-3.675 \text{ MJ}] [e.c.f.](1)$ [-]3.7 MJ = [-] $\frac{GMm}{(1)}$ (1)	
			$r \left[= \frac{GMm}{3.7 \times 10^6} \right] = 2.67 \times 10^6 \text{ m [or by impl.](1)}$ height = 0.93 ×10 ⁶ m (1) [Errors from mistake over signs $\rightarrow -1$; 0.60 × 10 ⁶ m arising from use of mgh scores 1 only]	4
				[11]
6	(a)		$F = \frac{Qq}{4\pi\varepsilon_0 r^2} (\text{subs})(1) [\text{or by impl.}] = 2.33 \times 10^{-7} \text{N} (1)$	2
	(b)	(i) (ii)	Arrows drawn from P directed away from the 2 +3.6 nC charges [Vertically] up[wards] or correct double arrow shown [e.c.f.]	1 1
		(iii)	$E = \frac{Q}{4\pi\varepsilon_0 r^2} (subs)(1) \text{ [or by impl.]} = 129.5 \text{ V m}^{-1} (1)$	
			$E_{\text{Total}} = \sqrt{129.5^2 + 129.5^2} \text{ or } 2 \times 130 \sin 45^\circ / \cos 45^\circ (1)$ [freestanding, i.e. $E_{\text{Tot}} = E_{\text{indiv}} \times \sqrt{2} \text{ gets } 3^{\text{rd}} \text{ mark}$] = 183.1 V m ⁻¹ / N C ⁻¹ ((unit)) (1) [91.6 V loses only 1 mark]	4
	(c)		Potential energy = $\frac{Qq}{4\pi\varepsilon_0 r}$ or $V = \frac{Q}{4\pi\varepsilon_0 r}$ (subs)(1)	
			attempt at adding both PEs or potentials <u>as scalars</u> (1) Work done = 1.295×10^{-7} J (1)	3
			$[0.65 \times 10^{-7} \text{ J loses only 1 mark}]$	[11]

Question	Marking details	Marks Available
7	Objects [seem to] travel too fast at large distances from centre (1) Either :	
	As orbital speed $\propto \sqrt{m}$ (<i>m</i> = enclosed mass) [accept <i>v</i> increases as <i>m</i> increases] (1) this suggests that the galaxy has extra [or hidden] mass (1).	
	Extra mass related to dark matter.	
	Far from centre, the mass within the orbit should be ~ constant (1)	
	so orbital speed v should be $\propto \frac{1}{\sqrt{r}}$ (theoretical) (1)	
	So enclosed mass $\propto \sqrt{r}$ for constant $v(1)$	
	Alt: Observed speeds too large [for objects to remain in galaxy] (1) so equation shows <i>M</i> is 'too large' (1) Speed doesn't fall off [at large distance] as theory suggests so mass	
	Extra mass attributed to dark matter (1)	4
		[4]

Question			Marking details		Marks Available
8	<i>(a)</i>		Reasonable orbit of star and companion in mutual orbit shown with Earth shown or direction towards Earth (1). Star orbits the centre of mass[accept 'common point'] [of the binary system] (1) Sensible comment relating radial v (1)[e.g. – in position shown – red s later – towards Earth so blue shift]	centre of mass orbit of large orbit of.' brown * to Earth elocity and position in diagram hift – longer wavelength; ½ orbit	3
	(b)	(i)	1700 [\pm 50] m s ⁻¹		1
		(ii)	$\frac{\Delta\lambda}{\lambda} = \frac{v}{c} (1) \text{ (subs } v \text{ and } c) \text{[or by in}$ $\Delta\lambda \left[= \frac{1700[\text{ecf}] \times 600 \times 10^{-9}}{3 \times 10^8} \right] = 3.4$	npl.] $\times 10^{-12} \text{ m}(1)$	2
	[No penalty for subsequent addition of $\Delta \lambda$ to λ] (c) (i) 170 [± 2] days				1
		(ii)	$v = \frac{2\pi r}{T} [\text{or } v = \omega r \text{ and } \omega = \frac{2\pi}{T}]$ $r = \frac{1700 \times 170 \times 24 \times 60 \times 60}{2\pi} [\text{e.c.f.}]$	(1)][= 3.97×10^9]m (1)	2
	(d)		$T = 2\pi \sqrt{\frac{d^3}{G(m_1 + m_2)}} (subs)(1)$ $d = \sqrt[3]{\frac{T^2 G M}{4\pi^2}} = 6.63 \times 10^{10} \text{ m} (1)$		2
			Either $r_1 = \frac{m_1}{m_1 + m_2} d \text{ (subs)}(1)$ $m_2 = \frac{m_1 r_1}{d - r_1} = 5.1 \times 10^{28} \text{ kg}(1)$	Or $m_1 r_1 = m_2 r_2 (1)$ $m_2 \Box \frac{m_1 r_1}{d}$ since $d \Box r_2$ $m_2 = 4.8 \times 10^{28}$ kg (1) [or 4.4×10^{28} kg if 7×10^{10} m	
				used]	2 [13]

GCE Physics - New MS - January 2010

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>