4723

Mark Scheme

4723 Core Mathematics 3

1 (i) (ii) (iii)	State $y = \sec x$ State $y = \cot x$ State $y = \sin^{-1} x$	B1 B1 B1	3 3	
2	<u>Either</u> : State or imply $\int \pi (2x-3)^4 dx$ Obtain integral of form $k(2x-3)^5$	B1 M1		or unsimplified equiv any constant k involving π or not
	Obtain $\frac{1}{10}(2x-3)^5$ or $\frac{1}{10}\pi(2x-3)^5$	A1		
	Attempt evaluation using 0 and $\frac{3}{2}$	M1		subtraction correct way round
	Obtain $\frac{243}{10}\pi$	A1	5	or exact equiv
	<u>Or</u> : State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
	Expand and obtain integral of order 5	M1		with at least three terms correct
	Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$	A1		with or without π
	Attempt evaluation using (0 and) $\frac{3}{2}$	M1		
	Obtain $\frac{243}{10}\pi$	A1	(5) 5	or exact equiv
3 (i)	Attempt use of identity for $\sec^2 \alpha$	M1		using $\pm \tan^2 \alpha \pm 1$
	Obtain $1 + (m+2)^2 - (1+m^2)$	A1		absent brackets implied by subsequent
	Obtain $4m + 4 = 16$ and hence $m = 3$	A1	3	correct working
(ii)	Attempt subn in identity for $tan(\alpha + \beta)$	M1		using $\frac{\pm \tan \alpha \pm \tan \beta}{1 \pm \tan \alpha \tan \beta}$
	Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$	A1	\checkmark	following their <i>m</i>
	Obtain $-\frac{4}{7}$	A1	3	or exact equiv
			6	
4 (i)	Obtain $\frac{1}{3}e^{3x} + e^{x}$	B1		
	Substitute to obtain $\frac{1}{3}e^{9a} + e^{3a} - \frac{1}{3}e^{3a} - e^{a}$	B1		or equiv
	Equate definite integral to 100 and			
	attempt rearrangement	M1		as far as $e^{9a} = \dots$
	Introduce natural logarithm Obtain $a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a})$	M1 A1		using correct process AG; necessary detail needed
(**)	· · · · · · · · · · · · · · · · · · ·	 D 1		
(ii)	Obtain correct first iterate Show correct iteration process	B1 M1		allow for 4 dp rounded or truncated with at least one more step
	Obtain at least three correct iterates in all	A1		allowing recovery after error
	Obtain 0.6309	A1		following at least three correct steps; answer required to exactly 4 dp
	$[0.6 \rightarrow 0.631269 \rightarrow 0.630]$	884	→ (9	0.630889]

5 (i)	Either: Show correct process for comp'n Obtain $y = 3(3x+7) - 2$ Obtain $x = -\frac{19}{9}$	M1 A1 A1	3	correct way round and in terms of x or equiv or exact equiv; condone absence of $y = 0$
	<u>Or</u> : Use $fg(x) = 0$ to obtain $g(x) = \frac{2}{3}$ Attempt solution of $g(x) = \frac{2}{3}$ Obtain $x = -\frac{19}{9}$	B1 M1 A1	(3)	or exact equiv; condone absence of $y = 0$
(ii)	Attempt formation of one of the equations $3x + 7 = \frac{x - 7}{3}$ or $3x + 7 = x$ or $\frac{x - 7}{3} = x$			or equiv
	Obtain $x = -\frac{7}{2}$	A1	,	or equiv
	Obtain $y = -\frac{7}{2}$	A1√	3	or equiv; following their value of <i>x</i>
(iii)	Attempt solution of modulus equation	M1		squaring both sides to obtain 3-term quadratics or forming linear equation with signs of $3x$ different on each side
	Obtain $-12x + 4 = 42x + 49$ or 3x - 2 = -3x - 7	A1		or equiv
	Obtain $x = -\frac{5}{6}$	A1		or exact equiv; as final answer
	Obtain $y = \frac{9}{2}$	A1	4	or equiv; and no other pair of answers
	· 2]	10	
6 (i)	Obtain derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$	M1		any constant k; any linear function for f
	Obtain $\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$	A1	2	or equiv
(ii)	<u>Either</u> : Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	*M1		
	Take reciprocal of expression/value			and without change of sign
	Obtain –7 for gradient of tangent Attempt equation of tangent	A1 M1		dep *M *M
	Obtain $y = -7x + 52$		5	and no second equation
	<u>Or</u> : Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	M1		
	Attempt formation of eq'n $x = m'y + c$	M1		where m' is attempt at $\frac{dx}{dy}$
	Obtain $x - 7 = -\frac{1}{7}(y - 3)$	A1		or equiv
	Attempt rearrangement to required form Obtain $y = -7x + 52$		(5) 7	and no second equation

7 (i)	State $R = 10$ Attempt to find value of α	B1 M1		or equiv implied by correct answer or its complement; allow sin/cos muddles
	Obtain 36.9 or $\tan^{-1}\frac{3}{4}$	A1	3	or greater accuracy 36.8699
(ii)(a)	Show correct process for finding one angle Obtain (64.16 + 36.87 and hence) 101 Show correct process for finding second angle	M1 A1 M1		or greater accuracy 101.027
	Obtain (115.84 + 36.87 and hence) 153		4	following their value of α ; or greater accuracy 152.711; and no other between 0 and 360
(b)	Recognise link with part (i)	M1		signalled by 40 – 20
	Use fact that maximum and minimum values of sine are 1 and -1 Obtain 60	M1 A1 1	-	may be implied; or equiv
8 (i)	Refer to translation and stretch	M1		in either order; allow here equiv informal terms such as 'move',
	State translation in <i>x</i> direction by 6 State stretch in <i>y</i> direction by 2 [SC: if M0 but one transformation completed		rec	or equiv; now with correct terminology or equiv; now with correct terminology
(••)				
(ii)	State $2\ln(x-6) = \ln x$ Show correct use of logarithm property	B1 *M1		or $2\ln(a-6) = \ln a$ or equiv
	Attempt solution of 3-term quadratic Obtain 9 only	M1	4	dep *M following correct solution of equation
(iii)	Attempt evaluation of form $k(y_0 + 4y_1 + y_2)$) M1		any constant k; maybe with $y_0 = 0$ implied
	Obtain $\frac{1}{3} \times 1(2 \ln 1 + 8 \ln 2 + 2 \ln 3)$	A1		or equiv
	Obtain 2.58	A1	3 0	or greater accuracy 2.5808
9 (a)	Attempt use of quotient rule	*M1		or equiv; allow numerator wrong way round and denominator errors
	Obtain $\frac{(kx^2+1)2kx - (kx^2-1)2kx}{(kx^2+1)^2}$	A1		or equiv; with absent brackets implied by
	Obtain correct simplified numerator $4kx$	A1		subsequent correct working
	Equate numerator of first derivative to zero State $x = 0$ or refer to $4kx$ being linear or	M1		dep *M
	observe that, with $k \neq 0$, only one sol'n	A1√	5	AG or equiv; following numerator of form $k'kx = 0$, any constant k'

(b)	Attempt use of product rule Obtain $me^{mx}(x^2 + mx) + e^{mx}(2x + m)$	*M1 A1	or equiv
	Equate to zero and either factorise with factor e^{mx} or divide through by e^{mx} Obtain $mx^2 + (m^2 + 2)x + m = 0$ or equiv and observe that e^{mx} cannot be zero	M1 A1	dep *M
	Attempt use of discriminant Simplify to obtain $m^4 + 4$ Observe that this is positive for all <i>m</i> and hence two roots	M1 A1 A1 7 12	using correct $b^2 - 4ac$ with their <i>a</i> , <i>b</i> , <i>c</i> or equiv or equiv; AG