Mark Scheme 4728 June 2006

4728

Mark Scheme

June 2006

1		Momentum before = $3M$ -	B1		Ignore g if included; accept
		1200×3 Momentum after = 1200×5	B1		inconsistent directions
					(or loss of momentum of
					loaded wagon = $3M$
					B1 gain of momentum of
					unloaded wagon = $1200(5 + 3)$
					B1)
		3M - 3600 = 6000	M1		Equation with all terms; accept with g
		3(1200 + m) - 3600 = 6000	A1		For any correct equation in <i>m</i> ,
					M
		<i>m</i> = 2000	A1	5	
2	(i)		M1		For resolving forces in the i
					direction or for relevant use of trigonometry
		$2.5 = 6.5 \sin \theta$	A1		ligonometry
		$\theta = 22.6^{\circ}$	A1	3	AG Accept verification
	(ii)		M1		For resolving forces in the j
					direction or for using
					Pythagoras or relevant trigonometry.
		$R = 6.5 cos 22.6^{\circ}$	A1		
		<i>R</i> = 6	A1	3	

4728

Mark Scheme

June 2006

•	(1)				
3	(i)		B1		Line segment <i>AB</i> (say) of +ve slope from origin Line segment <i>BC</i> (say) of steeper +ve slope and shorter
			B1 B1		time interval than those for <i>AB.</i> SR : If the straight line segments are joined by curves, this B1 mark is not awarded Line segment <i>CD</i> (say) of less steep slope compared with <i>BC</i> .
		Time intervals 80, 40, 40 <i>t</i> = 80, 120, 160	B1 B1		(An (x, t) graph is accepted and the references to more/less steep are reversed.) May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160, 360)	B1 ft	6	
	(iii)	v = 360/160	M1		Woman's velocity (= 2.25)
			M1		For equation of man's displacement in relevant
		s = 120 + 4.5(t - 80)	A1		interval
		2.25 <i>t</i>	M1		Accept omission of -80 Woman's displacement,
					awarded even if <i>t</i> is interpreted differently in man's expression
		$t = 106 \frac{2}{3}$ (107) SR Construction method	A1	5	Accept also 106.6, 106.7 but not 106
		Plotting points on graph	M1		Candidates reading the
		paper t between 104 and 109	A1		displacement intersection from graph, then dividing this
		inclusive			distance by the woman's
					speed to find <i>t</i> , also get $v = 360/160$ M1 as above for
					the woman's velocity.
4	(i)	Displacement is 20 m	B1	1	20+c (from integration) B0
	(ii)		M1		For using $s(t) = \int v(t)dt$
		$s(t) = 0.01t^3 - 0.15t^2 + 2t$	A1		Can be awarded prior to
		(+ <i>A</i>) 10 – 15 + 20 + <i>A</i> = 20	M1		cancelling For using <i>s</i> (10) = cv (20)
		Displacement is $0.01t^3 - 0.15t^2 + 2t + 5$	A1	4	AG
	(iii)	0.011 - 0.101 + 21 + 3	M1		For using $a(t) = dv/dt$
		a = 0.06t - 0.3	A1		
		0.06t - 0.3 = 0.6	DM1		For starting solving $a(t) = 0.6$ depends on previous M1
		<i>t</i> = 15	A1		
		Displacement is 35 m	B1	5	

4728

Mark Scheme

June 2006

5	(i)		M1		For using $F = 5$ and $F = \mu R$
5	(1)	D ma			For using $r = 0$ and $r = \mu R$
		R = mg	M1	0	
		<i>m</i> = 2.55	A1	3	Accept 2.5 or 2.6
	(ii)a	$P\cos\alpha = 6$	B1 M1		For resolving vertically with 3
					distinct forces
		$R = P \sin \alpha + 25$	A1ft		Or $P \sin \alpha + (cv m)g$
		0.2 <i>R</i> = 6	B1		For using $F = 6$ and $F = \mu R$.
					Can be implied by
					$0.2(P\sin \alpha + 25) = 6$
		$0.2(P\sin \alpha + 25) = 6$	M1		For an equation in
					<i>P</i> sin α (=5)after elimination of <i>R</i>
		$\alpha = 39.8^{\circ}$	A1		Accept a r t 40°
	(ii)b	$P^2 = 6^2 + 5^2$	M1		For eliminating or substituting
		or $P \cos 39.8^\circ = 6$	1011		for α with cv(6). Evidence is
		or $P \sin 39.8^\circ = 5$			needed that 5 is the value of
		01731105.0 = 0			$P\sin\alpha$ (rather than the original
					frictional force)
		<i>P</i> = 7.81	A1	8	Accept a r t 7.8
6	(i)	10500 + 3000 + 1500	M1	0	For summing 3 resistances
0	(1)	Driving force below 15000	A1		Accept generalised case or
		gives retardation		2	specific instance
	(ii)	35000 – 15000 = 80000a	M1	···- / ····	Newton's second law for
	(")	13000 - 800000	IVII		whole train
		Acceleration is 0.25 ms ⁻²	A1	2	AG Accept verification
	(iii)		M1		For applying Newton's second
	()				law to <i>E</i> only, at least 2 forces
					out of the relevant 3.
		35000 - 10500 - 8500 =	A1		
		0.25 <i>m</i>			
		Mass is 64000 kg	A1	3	
	(iv)		M1		For applying Newton's second
	()				law with all appropriate forces
		-15000 – 15000 = 80000 <i>a</i>	A1		a = -0.375
		OR			
		-3000-10500-15000=(80000			
		- m)a			
			M1		For applying Newton's second
					law to B only, only 1 force
		-1500 = <i>ma</i>	A1		Or cv(a)
		Mass is 4000 kg	A1	5	
	(v)	$-15000 - 10500 \pm T$			Follow through $cv (m_E, a)$, or
		= 64000(-	B1ft		accept use of <i>m</i> _E , <i>a</i>
		0.375)			
		$T = \pm 1500 \rightarrow$ forward force			
		on <i>E</i> of 1500 N	B1	2	
		OR (working with A and B)			
		$-1500 - 3000 \pm T$			Follow through $cv (m_E, a)$, or
		= (80000 - 64000)(-	B1ft		accept use of <i>m</i> _E , <i>a</i>
		0.375)	B1		
		$T = \pm 1500 \rightarrow$ forward force			
		on <i>E</i> of 1500			

M1

4728	Mark	Scheme	•	June 2006
	$a = (\mp)4ms^{-2}$ -mgsin15° - F = ma	A1 M1		For applying Newton's second law with 2 forces
	-0.1×9.8sin15° – $F = 0.1 \times (-4)$	A1		law with 2 loices
	$R = 0.1gcos15^{\circ}$ 0.146357 = μ 0.946607	B1 M1		For using $F = \mu R$
	Coefficient is 0.155	A1	7	Anything between 0.15 and 0.16 inclusive
(ii)	$mgsin15^{\circ} > \mu mgcos15^{\circ}$ (or tan 15° > μ)	M1		For comparing weight component with frictional force (or tan 'angle of friction' with μ)
	→ particle moves down	A1	2	Awarded if conclusion is correct even though values are wrong
(iii)	$(6 + 0) \div 2 = s \div 1.5$ s = 4.5	M1 A1		For using $(u + v) \div 2 = s \div t$
	$mgsin15^\circ - F = ma$	M1		For using Newton's second law with 2 forces
	0.25364 0.146357 = 0.1 <i>a</i>	A1		Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong
	$v^2 = 2(1.07285)4.5$	M1		value of <i>R</i> For using $v^2 = 2as$ with any value of <i>a</i>
	Speed is 3.11 ms ⁻¹	A1	6	Accept anything rounding to 3.1 from correct working