

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6691/01)

June 2009 6691 Statistics S3 Mark Scheme

Ques Num	stion nber	Scheme	Mar	ks
Q1	(a)	Randomly select a number between 00 and 499 (001 and 500) select every 500 th person	B1 B1	(2)
	(bi)	<u>Quota</u> Advantage: <u>Representative</u> sample can be achieved (with small sample size)		
		<u>Cheap</u> (costs kept to a minimum) <u>not</u> "quick" Administration relatively <u>easy</u> Disadvantage	B1	
		Not possible to estimate sampling errors (due to lack of randomness) Not a random process Judgment of interviewer can affect choice of sample – <u>bias</u> Non-response not recorded	B1	
	(bii)	Difficulties of defining controls e.g. social class		(2)
		<u>Systematic</u> Advantage: <u>Simple or easy to use <u>not</u> "quick" or "cheap" or "efficient"</u>	B1	
		It is suitable for large <u>samples</u> (not populations) Disadvantage Only random if the ordered list is (truly) random	B1	(2)
		Requires a list of the population <u>or</u> must assign a number to each member of the pop.		[6]
	(a)	$ \begin{array}{l} 1^{\text{st}} B1 \\ 2^{\text{nd}} B1 \end{array} \begin{array}{l} \text{for idea of using random numbers to select the first from 1 - 500 (o.e.)} \\ \text{for selecting every 500}^{\text{th}} \text{ (name on the list)} \end{array} $		
		If they are clearly trying to carry out stratified sample then score B0B0		
	(b)	Score B1 for any one line		
	(i)	 1st B1 for Quota advantage 2nd B1 for Quota disadvantage 		
	(ii)	3 rd B1 for Systematic Advantage 4 th B1 for Systematic Disadvantage		

Ques Num		Scheme	Mark	S
Q2	(a)	Limits are $20.1 \pm 1.96 \times 0.5$	M1 B1	
		<u>(19.1, 21.1)</u>	A1cso	(3)
	(b)	98 % confidence limits are		
		$20.1 \pm 2.3263 imes rac{0.5}{\sqrt{10}}$	M1 B1	
		<u>(19.7, 20.5)</u>	A1A1	(4)
	(c)	The growers claim is not correct Since 19.5 does not lie in the interval (19.7, 20.5)	B1 dB1	(2) [9]
	(0)			
	(a)	M1 for $20.1 \pm z \times 0.5$. Need 20.1 and 0.5 in correct places with no $\sqrt{10}$ B1 for $z = 1.96$ (or better) A1 for awrt 19.1 and awrt 21.1 but must have scored both M1 and B1 [Correct answer only scores 3/3]		
	(b)	M1 for $20.1 \pm z \times \frac{0.5}{\sqrt{10}}$, need to see 20.1, 0.5 and $\sqrt{10}$ in correct places B1 for $z = 2.3263$ (or better) 1 st A1 for awrt 19.7 2 nd A1 for awrt 20.5 [Correct answer only scores M1B0A1A1]		
	(c)	 1st B1 for rejection of the claim. Accept "unlikely" or "not correct" 2nd dB1 Dependent on scoring 1st B1 in this part for rejecting grower's claim for an argument that supports this. Allow comment on <u>their</u> 98% CI from (b) 		

Ques ⁻ Num							Sc	hem	e										Ма	rks		
Q3	(a)																					
			A	B	C	D	E	F	G	H	1	I	J	1								
		BMI	1		3		4	5	7	2	9		10						M1			
		or	10		8	3	7	6	4	9	2	2	1									
		Finishing po		5	1	9	6	4	10	2	7	7	8									
		d^2	4	1	4	1	4	1	9	0	4	1	4									
		$\sum d^2 = 32 (2)$	298)																M1			
		$r_{\rm s} = 1 - \frac{6 \times 32}{10 \times 99}$	<u>2</u> 9																M1 A1	ft		
		= 0.80606.	(-0.8060	6)	acce	ept	$\pm \frac{1}{1}$	33 65							<u>awr</u>	<u>rt ±</u>	<u>0.806</u>		A1	(5)		
	(b)	$H_0: \rho = 0, H_1$: ho > 0,																B1 B1			
		Critical value	is (±)0.56	36															B1			
		(0.806 > 0.56	536 therefor	e) in (criti	cal r	egi	on/	reiec	t H₀									M1 A1ft			
		The lower the		,			-				sup	por	t foi	r de	octo	rs be	lief		/////	(5)		
	(c)	The position i	is already r	nked	OR	Pog	itio	n ic	not	Norr	nalls	u di	otrik	hit	ed				B1	(1)		
		The position i	is alleady it	uiikeu	ΟK	1 05	1110	11 15	not		many	y ui	Sun	Jui	.cu					[11]		
	(a)	1 st M1 for	attempt to	rank I	BMI	sco	res															
		2^{nd} M1 for	attempt at	$\sum d^2$	(<u>mı</u>	<u>ist</u> b	e u	sing	, ran	ks)									No contrino			
			use of the operation is r			mul	a w	vith	their	$\sum c$	d^2 . I	If a	nsw	er	is no	ot co	rrect a	n	No ranking can score 3 rd M1 only			
		-	a correct e	-		ft t	hei	ir Σ	d^2	but o	onlv	if a	all 3	Μ	[s ar	e sco	red					
			rt <u>+</u> 0.806 (1						-													
	(12)		n <u>+</u> 0.000 (1	Jut sig	511 11	lust		com	pan	JIC W		uici		_u)							
	(b)	2 nd B1 for	$\rho > 0$ (or <	<0 but	mu	st be	e or	ne ta	il an	d co	nsist	tent	wit	h t	heir	rank	ing)		No H ₁			
		1	, critical valu														0,		assume	e one-		
			.5636 if two			-					1								tail for			
		M1 for	a correct st	ateme	nt re	elati	ng	their	r <i>r_s</i> w	ith t	heir	cv.										
		e.g	. "reject H ₀	, "in	cri	tical	reg	gion	", "s	ignif	ican	nt re	esult	,,								
			ay be implie																			
		rac	correct con e/fitness on low positive	<u>doo</u>	ctor'	's be	elie	f. (Com	ment	sho	uld	be o	one	<u>e</u> -tai	led.	shin					
	(c)		Poster P	<u></u>		<u></u> 0	2271				<u> </u>	P	5510		- 101		<u>p</u>					
	(~)	Wa	r a correct a as originally Quicker" or	/ parti	ally	orde	ere	d <u>or</u>														

Question Number	Scheme	Marks
Q4	$X \sim N (55,3^2)$ therefore $\overline{X} \sim N (55,\frac{9}{8})$	B1 B1
	P ($\overline{X} > 57$) = P (Z > $\frac{57 - 55}{\sqrt{\frac{9}{8}}}$) = P(Z > 1.8856)	M1
	= 1 - 0.9706 = 0.0294 <u>0.0294~0.0297</u>	M1 A1 [5]
	1 st B1 for \overline{X} ~ normal and $\mu = 55$, may be implied but must be \overline{X} 2 nd B1 for Var(\overline{X}) or st. dev of \overline{X} e.g. $\overline{X} \sim N(55, \frac{9}{8})$ or $\overline{X} \sim N\left(55, \left(\frac{3}{\sqrt{8}}\right)^2\right)$ for B1B1 Condone use of X if they clearly mean \overline{X} so $X \sim N\left(55, \frac{9}{8}\right)$ is OK for B1B1 1 st M1 for an attempt to standardize with 57 and mean of 55 and their st. dev. ≠ 3 2 nd M1 for 1 - tables value. Must be trying to find a probability < 0.5 A1 for answers in the range 0.0294~0.0297	
ALT	$\sum_{1}^{8} X_i \sim N(8 \times 55, 8 \times 3^2)$ 1 st B1 for $\sum X \sim normal and mean = 8 \times 55$ 2 nd B1 for variance = 8×3^2 1 st M1 for attempt to standardise with 57×8, mean of 55×8 and their st dev $\neq 3$	

	stion nber		Sche	me			Mar	ks		
Q5	(a)	$\lambda = \frac{0 \times 40 + 1 \times 33 + 2 \times 1}{100}$	$4+3\times8+4\times5 = 1.0$	15			M1 A1	(2)		
					25					
	(b)	Using Expected frequency = $100 \times P(X = x) = 100 \times \frac{e^{-1.05}1.05^x}{x!}$ gives								
		r = 36.743		Λ.	awrt 36.743 or 1		A1			
		s = 19.290			19.29 or awrt 1	9.290	A1	(3)		
	(c)	H ₀ : Poisson distributio H ₁ : Poisson distributio		odel			B1			
		Number of goals	Frequency	Expected frequency						
		0	40	34.994						
		1	33	36.743						
		2	14	19.290		1				
		3	8	6.752	8.972443		M1			
		<u>≥</u> 4	5	2.221	0.72113					
		v = 4 - 1 - 1 = 2 CR : $\chi_2^2(0.05) > 5.991$ $\sum (O - E)^2 (40 - 34)$	$(13-3)^2$	8.972443) ²			B1ft B1 M1			
	$\sum \frac{(O-E)^2}{E} = \frac{(40-34.9937)^2}{34.9937} + \dots + \frac{(13-8.972443)^2}{8.972443}$ [=0.7161+0.3813+1.4508+1.80789] = 4.356. (ans in range 4.2 - 4.4) Not in critical region									
		Number of goals scored	l can follow a Poisso	n distribution / m	anagers claim is ju	ustified	A1 ft	(7)		
								[12]		
	(a)	-	find the mean- at leas nly will score both m		erator seen					
	(b)	M1 for use of correct	formula (ft their mea	nn). $1^{st} A 1$ for r ,	2 nd A1 for <i>s</i> (19.2	9 OK)				
	(c)	 1st B1 Must have both hypotheses and mention Poisson at least once inclusion of their value for mean in hypotheses is B0 but condone in conclusion 1st M1 for an attempt to pool ≥ 4 2nd B1ft for <i>n</i>-1-1 = 2 i.e realising that they must subtract 2 from their <i>n</i> 3rd B1 for 5.991 only 2nd M1 for an attempt at the test statistic, at least 2 correct expressions/values (to 3sf) 1st A1 for answers in the range 4.2~4.4 2nd A1 for correct comment in context based on their test statistic and their cv that mentions goals or manager. Dependent on 2nd M1 Condone mention of Po(1.05) in conclusion Score A0 for inconsistencies e.g. "significant" followed by "manager's claim is justified" 								

Question Number	Scheme	Marks
Q6 (a)	$\mu_{\rm u}$ ~ mean length of upper shore limpets, $\mu_{\rm L}$ ~ mean length of lower shore limpets	
	$H_0: \mu_u = \mu_L$	
	$H_1: \mu_u < \mu_L$ both	B1
	$\sqrt{0.42^2 - 0.67^2}$	M1
	s.e. = $\sqrt{\frac{0.42^2}{120} + \frac{0.67^2}{150}}$	A1
	= 0.0668	
	$z = \frac{5.05 - 4.97}{0.0668} = (\pm)1.1975$ awrt ± 1.20	dM1 A1
	Critical region is $z \ge 1.6449$, or probability = awrt (0.115 or 0.116) $z = \pm 1.6449$	B1
	(1.1975 < 1.6449) therefore not in critical region / accept H ₀ /not significant (or P(Z \ge 1.1975) = 0.1151, 0.1151 > 0.05 or z not in critical region)	M1
	There is no evidence that the limpets on the upper shore are shorter than the limpets on the lower shore.	A1
	Assume the populations or variables are independent	B1
(b)	Standard deviation of sample = standard deviation of population	B1
	[Mention of <u>Central Limit Theorem</u> does <u>NOT</u> score the mark]	Ľ
(a)	1 st B1 If μ_1, μ_2 used then it must be clear which refers to upper shore. Accept	
	sensible choice of letters such as u and l .	
	1 st M1 Condone minor slips e.g. $\frac{0.67^2}{120}$ or $\frac{0.67}{150} + \frac{0.42^2}{120}$ etc i.e. swapped <i>n</i> or one	
	sd and one variance but M0 for $\sqrt{\frac{0.67}{150} + \frac{0.42}{120}}$	
	1 st A1 can be scored for a fully correct expression. May be implied by awrt 1.20	
	$2^{nd} dM1$ is dependent upon the $1^{st} M1$ but can ft their se value if this mark is scored.	
	$2^{nd} A1$ for awrt (<u>+</u>) 1.20	
	3^{rd} M1 for a correct statement based on their <i>z</i> value and their cv. No cv is M0A0 If using probability they must compare their <i>p</i> (<0.5) with 0.05 (o.e) so can allow 0.884< 0.95 to score this 3^{rd} M1 mark. May be implied by their contextual statement and M1A0 is possible.	
(b)	3^{rd} A1 for a correct comment to accept null hypothesis that mentions <u>length</u> of <u>limpets</u> on the two <u>shores</u> .	
	1 st B1 for one correct statement. Accept "samples are independent"	
	2^{nd} B1 for both statements	

Questi Numb		Scheme	Marks
Q7 ((a)	Estimate of Mean = $\frac{600.9}{5}$ = 120.18	M1A1
		Estimate of Variance = $\frac{1}{4}$ { 72216.31 - $\frac{600.9^2}{5}$ } or $\frac{0.148}{4} = 0.037$	M1 A1ft A1 (5)
((b)	$P(-0.05 < \mu - \hat{\mu} < 0.05) = 0.90$ or $P(-0.05 < \overline{X} - \mu < 0.05) = 0.90$ [\le is OK]	B1
		$\frac{\frac{0.05}{0.2}}{\frac{\sqrt{n}}{\sqrt{n}}} = 1.6449$	M1 A1
		$n = \frac{1.6449^2 \times 0.2^2}{0.05^2}$	dM1
		n = 43.29	A1
		n = 44	A1 (/)
			(6) [11]
((a)	1 st M1 for an attempt at $\sum x$ (accept 600 to 1sf)	
		1^{st}A1 for $\frac{600.9}{5}$ = awrt 120 or awrt 120.2. No working give M1A1 for awrt 120.2	
		2^{nd} M1 for the use of a correct formula including a reasonable attempt at	
		$\sum x^2$ (Accept 70 000 to 1sf) or $\sum (x - \overline{x})^2 = 0.15$ (to 2 dp)	
		2^{nd} A1ft for a correct expression with correct $\sum x^2$ but can ft their mean (for	
		expression - no need to check values if it is incorrect) 3 rd A1 for 0.037 Correct answer with no working scores 3/3 for variance	
((b)	B1 for a correct probability statement <u>or</u> "width of 90% $CI = 0.05 \times 2 = 0.1$ "	1 st B1 may
		1 st M1 for $\frac{0.05}{\frac{0.2}{\sqrt{n}}} = z$ value or $2 \times \frac{0.2}{\sqrt{n}} \times z = 0.1$	be implied by 1 st A1 scored or
		Condone 0.5 instead of 0.05 <u>or missing 2 or 0.05</u> for 0.1 for M1 1^{st} A1 for a correct equation including 1.6449	correct equation.
		$2^{nd} dM1$ Dependent upon $1^{st} M1$ for rearranging to get $n = \dots$ Must see "squaring"	
		$2^{nd} A1$ for <i>n</i> = awrt 43.3	
		3^{rd} A1 for rounding up to get $n = 44$	
		Using e.g.1.645 instead of 1.6449 can score all the marks except the 1 st A1	

Question Number	Scheme	Marks
Q8 (a)	$E(4X-3Y) = 4E(X) - 3E(Y) = 4 \times 30 - 3 \times 20 = 60$	M1 A1 (2)
(b)	$Var(4X-3Y) = 16 Var(X) + 9 Var(Y)$ $= 16 \times 9 + 9 \times 4$ $= 180$ 16 or 9; adding	M1; M1 A1 (3)
(c)	E(B) = 80 Var (B) = 16 E(B - A) = 20 Var (B - A) = 196 E(B)-E(A) ft on 180 and 16	(3) B1 B1 M1 A1ft
	P (B - A >0) = P $\left(Z > \frac{-20}{\sqrt{196}}\right) = \left[P(Z > -1.428)\right]$ stand. using their mean and var = 0.923 awrt 0.923 - 0.924	dM1 A1 (6) [11]
(a)	M1 for correct use of $E(aX + bY)$ formula	
(b)	 1st M1 for 16Var(X) or 9Var(Y) 2nd M1 for adding variances Key points are the 16, 9 and +. Allow slip e.g using Var(X)=4 etc to score Ms 	
(c)	1 st M1 for attempting <i>B</i> - <i>A</i> and E(<i>B</i> - <i>A</i>) or <i>A</i> - <i>B</i> and E(<i>A</i> - <i>B</i>) This mark may be implied by an attempt at a correct probability e.g. $P\left(Z > \frac{0 - (80 - 60)}{\sqrt{180 + 16}}\right)$. To be implied we must see the "0" 1 st A1ft for Var(<i>B</i> - <i>A</i>) can ft their Var(<i>A</i>) = 180 and their Var(<i>B</i>) = 16 2 nd dM1 Dependent upon the 1 st M1 in part (c). for attempting a correct probability i.e. P(<i>B</i> - <i>A</i> >0) or P(<i>A</i> - <i>B</i> < 0) and standardising with their mean and variance. They must standardise properly with the 0 to score this mark 2 nd A1 for awrt 0.923 ~ 0.924	