CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the March 2016 series

9702 PHYSICS

9702/22

Paper 2 (AS Level Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

群尧咨询

Page 2		2	Mark Scheme	Syllabus	Paper	
		•	Cambridge International AS/A Level – March 2016	9702	22	
1	(a)	me	tre rule/tape measure		B1	
	(b)	(i)	$v = [(1.8 \times 126 \times 10^{-2}) / 5.1 \times 10^{-3}]^{1/2}$ = 21.1 (m s ⁻¹)		C1 A1	
		(ii)	percentage uncertainty = 4% or fractional uncertainty = 0.04 $\Delta v = 0.04 \times 21.1$		C1	
			= 0.84 $v = 21.1 \pm 0.8 (\mathrm{ms^{-1}})$		C1 A1	
2	(a)	cha	ange in velocity/time (taken) or rate of change of velocity		B1	
	(b)	(i)	$v_{\rm X} = (24/1.5) = 16 ({\rm ms^{-1}})$		A1	
		(ii)	tan 28° = v_Y / v_X or $v_X = v \cos 28^\circ$ and $v_Y = v \sin 28^\circ$ $v_Y = 16 \tan 28^\circ$ or $v_Y = 16 \times (\sin 28^\circ / \cos 28^\circ)$ so $v_Y = 8.5 (\text{m s}^{-1})$		C1 A1	
		(iii)	v = u + at		C1	
			t = (0 - 8.5)/(-9.81) = 0.87 (s)		A1	
		(iv)	straight line from positive v_Y at $t = 0$ to negative v_Y at $t = 1.5$ s line starts at (0, 8.5) and crosses <i>t</i> -axis at (0.87, 0) and does not get	o beyond <i>t</i> =	M1 1.5 s. A1	
	(c)	(i)	$(v^2 = u^2 + 2as)$ $0 = 8.5^2 + 2(-9.81)s$ or $(s = ut + \frac{1}{2}at^2)$ $s = 8.5 \times 0.87 + \frac{1}{2} \times (-9.81) \times 0.87^2$ or $(s = vt - \frac{1}{2}at^2)$ $s = 0 - \frac{1}{2} \times (-9.81) \times 0.87^2$ or $(s = \frac{1}{2}(u + v)t$ or area under graph) $s = 0.5 \times 8.5 \times 0.87$		C1	
			<i>s</i> = 3.7 (m)		A1	
		(ii)	$\Delta E_{P} = mg\Delta h \qquad (allow E = mgh)$		C1	
			$m = 22 / (9.81 \times 3.7)$ = 0.61 (kg)		A1	
	 (d) acceleration (of freefall) is unchanged/not dependent on mass, and so no effect maximum height) or explanation in terms of energy: 					
		(ini	tial) KE ∞ mass, (Δ)KE = (Δ)PE, (max) PE ∞ mass, and so effect (on maximum height)		B1	
3	(a)	(i)	(work =) force \times distance <u>moved</u> in the direction of the force.		B1	
		(ii)	the energy stored (in an object) due to extension/compression/ch	ange of sha	pe B1	
	(b)	(i)	$E_{\rm K} = \frac{1}{2}mv^2$ = 0.5 × 0.40 × 0.30 ²		C1	
			$= 1.8 \times 10^{-2} (J)$		A1	

Ρ	age	3	Mark Scheme	Syllabus	Paper
	-		Cambridge International AS/A Level – March 2016	9702	22
		(ii)	(change in) kinetic energy = work done on spring/(change in) elastic $1.8 \times 10^{-2} = \frac{1}{2} \times F \times 0.080$ $F_{MAX} = 0.45$ (N)	c potential	energy C1 C1 A1
		(iii)	a = F/m = 0.45/0.40 = 1.1 (m s ⁻²)		A1
		(iv)	1. constant velocity/resultant force is zero, so in equilibrium		B1
			2. decelerating/resultant force is not zero, so not in equilibrium		B1
	(c)		ved line from the origin n decreasing gradient		M1 A1
4	(a)	(i)	Displacement of particles perpendicular to direction of energy propa	gation	B1
		(ii)	wave <u>s</u> meet/overlap (at a point) (resultant) displacement is sum of the individual displacements		B1 B1
	(b)	(i)	$\lambda = vT$ or $\lambda = v/f$ and $f = 1/T$ $\lambda = 4.0 \times 1.5$		C1
			$\lambda = 6.0 (\mathrm{cm})$		A1
		(ii)	path difference [= $(44 \text{ cm} - 29 \text{ cm})/6 \text{ cm}$] = 2.5 λ		M1
			either waves have path difference = $(n + \frac{1}{2})\lambda$ or waves have phase difference = 180°		M1
			so destructive interference		A1
	(c)	(i)	intensity \propto (amplitude) ² ratio = (0.60 ² /0.90 ²) = 0.44		C1 A1
		(ii)	phase difference = 90°		A1
5	(a)	(i)	movement/flow of charge carriers		B1
		(ii)	work (done) or energy (transformed)(from electrical to other forms) charge		B1
	(b)	(i)	p.d. across one lamp = $2.5 V$ resistance = [(8.7 - 7.5)/0.3]/2 = $2.0 (\Omega)$		C1 A1
		(ii)	straight line through the origin with gradient of 0.5		M1 A1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9702	22
(iii)	$P = I^{2}R \text{or } P = VI \text{ and } V = IR \text{or } P = V^{2} / R \text{ and } V = IR$ = 0.30 ² × 2.0 = 0.60 × 0.30 = 0.60 ² / 2.0 = 0.18 (W)	2	C1 A1
(iv)	1 $R = \rho l / A$ $l = (2.0 \times 0.40 \times 10^{-6}) / 1.7 \times 10^{-8}$		C1
	= 47 (m)		A1
	2 I = Anvq		
	$v = 0.30 / (0.40 \times 10^{-6} \times 8.5 \times 10^{28} \times 1.6 \times 10^{-19})$		C1
	$= 5.5 \times 10^{-5} \text{ (m s}^{-1}\text{)}$		A1
6 (a)	¹ p		B1
	β^- and ${}^0_0\overline{v}$		B1
(b) or	(b) an (electron) antineutrino		B1
(b) ai			Ы
			5.4
(c) le	oton(s)		B1
(d) (i)	down, down, up/ddu		B1
(ii)	a down/d (quark) changes to an up/u (quark) or ddu \rightarrow uud		B1