PMT # GCE AS/A level 1091/01 Candidate Name ## **CHEMISTRY CH1** A.M. THURSDAY, 14 January 2010 $1\frac{1}{2}$ hours | FOR EXAMINER'S
USE ONLY | | | | | | | | |----------------------------|-----|--|--|--|--|--|--| | Section Question Mark | | | | | | | | | A | 1-6 | | | | | | | | В | 7 | | | | | | | | | 8 | TOTAL MARK | | | | | | | | #### ADDITIONAL MATERIALS In addition to this examination paper, you will need a: - calculator; - copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require. ### INSTRUCTIONS TO CANDIDATES Write your name, centre number and candidate number in the spaces at the top of this page. **Section A** Answer **all** questions in the spaces provided. **Section B** Answer all questions in the spaces provided. Candidates are advised to allocate their time appropriately between **Section A** (10 marks) and **Section B** (70 marks). #### INFORMATION FOR CANDIDATES The number of marks is given in brackets at the end of each question or part-question. The maximum mark for this paper is 80. Your answers must be relevant and must make full use of the information given to be awarded full marks for a question. You are reminded that marking will take into account the Quality of Written Communication used in all written answers. Page 18 may be used for rough work. Examiner PMT ### **SECTION A** Answer all the questions in the spaces provided. | 1. | Complete the boxes below, by inserting arrows to represent electrons, to show the | electron | |----|---|----------| | | configuration of an atom of aluminium, Al. | [1] | | 1s | 2s | 2p | 3s | 3p | |----|----|----|----|----| | | | | | | 2. State which **one** of the following letters represents the first five ionisation energies of aluminium, Al. Give a reason for your choice. [2] Ionisation energy / kJ mol⁻¹ | | 1st | 2nd | 3rd | 4th | 5th | |---|------|------|------|-------|-------| | A | 496 | 4563 | 6913 | 9544 | 13352 | | В | 578 | 1817 | 2745 | 11578 | 14831 | | С | 1402 | 2856 | 4578 | 7475 | 9445 | | D | 789 | 1577 | 3232 | 4356 | 16091 | | Letter | | |--------|--| | Reason | | | | | | | | | | | **PMT** 3 | xamıner | |-----------| | a m 1 v · | | only | **3.** (a) Complete the following definition of the **mole**: [1] A mole is the amount of material containing the same number of particles as there are atoms in - (b) State the number of moles of sulfur atoms, S, in 0.3 mol iron(III) sulfate, $Fe_2(SO_4)_3$. [1] - **4.** The diagram below shows the electron energy levels for a hydrogen atom. (a) State which one of the following correctly describes the transition represented by arrow X: [1] - **A** The first line in the Lyman series - **B** The second line in the Lyman series - **C** The first line in the Balmer series - **D** The second line in the Balmer series - (b) Draw on the energy level diagram an arrow to represent the transition which occurs when a hydrogen atom is ionised. [1] Turn over. (1091-01) 群尧咨询 4 Examiner only | 5. | Sketc | Sketch a diagram to show the shape of a p-orbital. | | | | | | | | |----|-------|--|----------|--|--|--|--|--|--| 6. | (a) | Explain the term <i>dynamic equilibrium</i> for a chemical system. | [1] | | | | | | | | | (b) | Explain how you would tell, from the properties of the system, that equilibrium has reached. | been [1] | | | | | | | | | | Section A Total | | | | | | | | Section A Total [10] (i) Explain the term *isotopes*. PMT Examiner only 5 ## **SECTION B** Answer all the questions in the spaces provided. - 7. Iridium, Ir, is the element with atomic number 77. - (a) Its mass spectrum shows that iridium has two naturally-occurring isotopes. | (ii) | State the numbers of electrons, neutrons and protons present in each of the t isotopes. | wo
[2] | |-------|---|-----------| | | | | | | | | | (iii) | Measure the height of each peak and hence calculate the percentage abundance each isotope in naturally-occurring iridium. | of
[2] | | | | | (1091-01) **Turn over.** 5 100101 [1] Examiner **PMT** (b) A further man-made, radioactive isotope of iridium, ¹⁹²Ir, is manufactured by bombarding naturally-occurring iridium with neutrons in a nuclear reactor. ¹⁹²Ir is used in the radiotherapy of certain cancers. (i) 192 Ir decays by β -emission. Explain what is meant by β -emission. [1] (ii) Give the mass number and symbol of the product atom in (b)(i). [2] Mass number Symbol (c) The decay of a 10g sample of 192 Ir with time is shown in the graph. (i) Explain the term *half-life*. [1] (ii) Determine the half-life of ¹⁹²Ir from the graph. [1] (1091-01) Examiner only 7 | | (iii)
 | Determine the total time required for the 10 g mass of ¹⁹² Ir to decay to 1.25 g. | [2] | |-----|-----------|--|------| | | (iv) | Calculate, from the graph, the rate of decay of ¹⁹² Ir (g day ⁻¹) during the first 20 da | [2] | | (d) | | appound P , one of the most important compounds of iridium, is a black solid contain % sodium, Na, 42.6 % iridium, Ir, and 47.2 % chlorine, Cl, by mass. Calculate the empirical formula (which is also the molecular formula) of compound P . $A_{\rm r}({\rm Na}) = 23.0; \ A_{\rm r}({\rm Cl}) = 35.5; \ A_{\rm r}({\rm Ir}) = 192.$ | C | | | (ii) | Compound \mathbf{P} is made by reacting a mixture of sodium chloride, NaCl, and iridium chloride, $IrCl_x$. There is only one product of the reaction. By constructing balanced equation, or otherwise, determine the value of \mathbf{x} in the iridium chlor formula, $IrCl_x$. | ng a | Total [17] V10 1091 01 (1091-01) **Turn over.** Examiner only **PMT** **8.** Because of the link to global warming, much effort is being devoted to investigating how emissions of carbon dioxide, CO₂, into the atmosphere by power stations burning fossil fuels can be reduced or eliminated. | <i>(a)</i> | One area | of | investigation | is | the | removal | of | CO_2 | by | sodium | carbonate. | Three | possible | |------------|-----------|------|---------------|----|-----|---------|----|--------|----|--------|------------|-------|----------| | | reactions | are: | • | | | | | | | | | | | $$Na_2CO_3(s) + CO_2(g) + H_2O(g) \Longrightarrow 2NaHCO_3(s)$$ Reaction 1 $3Na_2CO_3(s) + CO_2(g) + 5H_2O(g) \Longrightarrow 2Na_2CO_3.NaHCO_3.2H_2O(s)$ Reaction 2 $5Na_2CO_3(s) + 3CO_2(g) + 3H_2O(g) \Longrightarrow 2Na_2CO_3.3NaHCO_3(s)$ (Wegscheider's Salt) Reaction 3 | (i) | Giving a reason, determine from the equations which of the three reactions | uses | |-----|--|------| | | sodium carbonate, Na ₂ CO ₃ (s), most effectively to absorb CO ₂ (g). | [2] | | | OWC | [1] | |
 |
 | | |------|------|--| |
 |
 | | |
 |
 | | - (ii) State Le Chatelier's Principle. [1] - (iii) Giving your reasons, use Le Chatelier's Principle to determine whether CO₂(g) removal will be more efficient at high gas pressure or low gas pressure. [2] Examiner only **PMT** 9 (b) For one industrial system using **Reaction 1** $$Na_2CO_3(s) + CO_2(g) + H_2O(g)$$ \longrightarrow $2NaHCO_3(s)$ the amount of each species present at equilibrium was measured over a range of temperatures. The graph below shows the results. (i) Giving your reasoning, determine from the graph whether the forward reaction in **Reaction 1** is exothermic or endothermic. [2] - (ii) After the removal of $CO_2(g)$, the solid $NaHCO_3$ residue is taken away and recycled to regenerate sodium carbonate, $Na_2CO_3(s)$. - I By using the graph, or otherwise, determine how sodium carbonate, Na₂CO₃(s), can be regenerated from the NaHCO₃ residue. [1] - II State **one** problem associated with the regeneration of sodium carbonate, $Na_2CO_3(s)$, by the method you have given. [1] 10 1091 01 Examiner only | (c) | Another area of investigation is the use of a new type of plastic membrane, structured by means of nanotechnology, to catch carbon dioxide gas whilst allowing other waste gases to pass freely through. | | | | | | |-----|--|--|--------------|--|--|--| | | | 000 dm ³ of waste gas at 25 °C yielded 275 g of carbon dioxide, separated by a plabrane, calculate: | astic | | | | | | (i) | the number of moles of carbon dioxide in the 275 g separated by the membrane; | [2] | | | | | | (ii) | the volume of carbon dioxide separated at 25 °C; | [1] | | | | | | (iii) | One mole of gas has a volume of 24.0 dm ³ at 25 °C and 1 atm pressure] the percentage by volume of carbon dioxide in the waste gas. | [1] | | | | | (d) | Carb | Carbon dioxide, CO_2 is an <i>acid gas</i> . | | | | | | | (i) | Define the term acid. | [1] | | | | | | (ii) | By considering its interaction with water, explain how carbon dioxide can behavan acid. | ve as [1] | | | | | | (iii) | Though the pH of pure water is 7, explain why naturally-occurring water in co with air has a pH of less than 7. | ntact
[1] | | | | | | | Total | [17] | | | | Examiner only PMT **9.** (a) (i) Given the bond enthalpy values | Bond | Bond enthalpy value / kJ mol ⁻¹ | |---------|--| | Cl – Cl | 243 | | H – Cl | 432 | | H – H | 436 | calculate the standard enthalpy change, ΔH^{\oplus} , for the gaseous reaction | | $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$ | [2] | |-------|---|------------------| | | | | | (ii) | Using your answer to (a) (i) calculate the standard enthalpy change of for ΔH_f^{\bullet} , for gaseous hydrogen chloride, $HCl(g)$. | mation, [1] | | (iii) | State the standard conditions which apply to <i>standard</i> enthalpy changes. | [2] | | (iv) | By reference to the bond enthalpy values in $(a)(i)$, state which bond will be in the reaction. | eak first
[1] | (1091-01) **Turn over.** www.qyconsult.com Examiner only PMT # (v) Typical energies associated with visible light are | Colour of light | Typical energy / kJ mol ⁻¹ | |-----------------|---------------------------------------| | red | 171 | | yellow | 200 | | green | 226 | | blue | 254 | | violet | 285 | | | State and explain which colours of light will cause a mixture of hydrogen chlorine to react. | and
[3] | |------|--|------------| | (vi) | Explain why shining visible light has very little effect on the reverse reaction | | | | $2HCl(g) \longrightarrow H_2(g) + Cl_2(g)$ | [1] | | | | | Examiner only **PMT** (b) The corresponding reaction between hydrogen, $H_2(g)$, and iodine, $I_2(g)$, $$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$ for which the standard enthalpy change of reaction, ΔH^{\oplus} , = -9.6 kJ mol⁻¹, is a system unaffected by light. Sketch on the axes below the energy profile (*energy* v *extent of reaction*) for the reaction between hydrogen and iodine and use it to explain: - the concept of activation energy; - the effect of increasing temperature on the rate of reaction; - the effect of adding a catalyst to a reaction mixture. [6] QWC [2] Total [18] Turn over. Examiner only **PMT** | 10 | Amana amia MIII amal la | vrduo oblonio opid III | C1damaa am aa | id basa maastism in | a anna anna a a linti a m | |-----|----------------------------------|-----------------------------------|---------------------|---------------------|---------------------------| | IV. | Ammonia, NH ₃ , and h | ivarochioric acia. Hi | C.E. iindergo an ac | id-base reaction in | adheous sommon | | | 1 1111111011114, 1 1112, 4114 11 | ij ai o o iii o ii o a o i a, i i | ci, amadigo am ac | ia case reaction in | aqueous solution. | $NH_3(aq) + HCl(aq) \longrightarrow NH_4^+(aq) + Cl^-(aq)$ (a) Explain why this is an acid-base reaction, clearly identifying **both** the acidic and basic reactants. [2] - (b) A 25 cm³ sample taken from a stock aqueous solution of ammonia was mixed with 25 cm³ of a solution containing excess hydrochloric acid. The temperature of the mixture rose by 0.7 °C. - (i) Given that the enthalpy change for the reaction, ΔH , is $-53.4 \, \text{kJ mol}^{-1}$, use the equation below to calculate n, the number of moles of ammonia, NH₃, which has reacted. $$\Delta H = \frac{-\mathrm{vc}\Delta T}{\mathrm{n}}$$ where v is the **total** volume of solution (cm³) c is the specific heat capacity (4.2 J cm⁻³ °C⁻¹) ΔT is the temperature change (°C) n is the number of moles of ammonia reacted [3] (ii) Calculate the concentration (mol dm⁻³) of the original ammonia stock solution. [1] Examiner only PMT | (c) | The concentration of the same stock aqueous solution of ammonia used in part (b) was also determined by an acid-base titration. Three separate 25.00 cm ³ samples of the ammonia solution were titrated against hydrochloric acid of concentration 0.1000 mol dm ⁻³ from a burette, using an appropriate indicator. The three titre volumes were 31.25 cm ³ , 31.25 cm ³ and 31.20 cm ³ respectively. | | | | |-----|---|---|--|--| | | (i) | Calculate the mean titre volume and use this to find the concentration (mol dm ⁻³) of the ammonia solution. [2] | | | | | (ii) | Compare the concentration values for the stock ammonia solution obtained by the two experimental methods, (b) (ii) and (c) (i). State which experiment will give the more precise value, giving two reasons for your choice. [3] | | | | | | | | | Examiner only **PMT** (d) During World War II, ammonia was used as a fuel for running buses in Belgium. With the current problems associated with fossil fuels, interest in the use of ammonia as a fuel is being revived. Some relevant standard enthalpy changes of formation, ΔH_f^{\bullet} , are given in the table below. | Species | $\Delta H_{\rm f}^{\bullet}$ / kJ mol ⁻¹ | |---------------------|---| | CH ₄ (g) | -74.8 | | CO ₂ (g) | -393.5 | | H ₂ O(g) | -241.8 | | $N_2(g)$ | 0 | | NH ₃ (g) | -46.1 | | $O_2(g)$ | 0 | | (i) | Explain why N ₂ (g) and O ₂ (g) each have a value of zero for their standard | d enthalpy | |-----|--|------------| | | change of formation, $\Delta H_{\rm f}^{\odot}$. | [1] | (ii) Use the ΔH_f^{\bullet} values given to calculate: I the standard enthalpy change, ΔH^{\oplus} , for the combustion of ammonia; $$4NH_3(g) + 3O_2(g) \longrightarrow 2N_2(g) + 6H_2O(g)$$ [2] II the standard enthalpy change, ΔH^{\ominus} , for the combustion of methane (as an example of a fossil fuel). $$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$ [2] Examiner only PMT | (iii) | State one advantage and one disadvantage of using ammonia as a fuel compared to using methane. [2] | | |-------|--|--| | | Advantage of using ammonia | | | | Disadvantage of using ammonia | | | | Total [18] | | | | Section B Total [70] | | (1091-01) **Turn over.** | Rough Work | |------------| (1091-01) | Examiner only PMT