

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2012

群尧咨询

CH1 Section A

1.01

[1]

2.	1/12 th mass of one atom of carbon-12.					[1]
3.	С					[1]
4.	(a)	C <u>12.1</u> 12	O <u>16.2</u> 16	CI <u>71.7</u> 35.5	(1)	

1.01

1	1	2		
Formula	= COCl ₂		(1)	[2]

2.02

M_r / molecular mass / number of atoms of any element in (b) compound [1]

[2] 5. (a) С В D Ε Α

(1 mark if one mistake e.g. A in wrong place)

(b) (1) Ζ

Si is in Group 4 therefore large jump in ionisation energy would be after the fourth ionisation, not before it / W, X and Y have a large jump before the fourth ionisation energy so cannot be in Group 4 (1)

[2]

Total [10]

PMT

Section B

6.	(a)	(i)	12				[1]
		(ii)	14				[1]
		(iii)	Percentage / abundance / ratio / proportion of each isotope				[1]
	(b)	(i)	0.125 g				[1]
		(ii)	e.g. Cobalt-60 (1) in radiotherapy (1) / Carbon-14 (1 radio carbon dating (1) / Iodine-131 (1) as a tracer in thyroid glands (1)				
	(c)	(i)	Atoms are hit by an electron beam / electrons fired f an electron gun (and lose electrons)				
		(ii)	To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field - no credit for 'so that <i>atoms</i> can be deflected' [1				that .' [1]
		(iii)	They are deflected by a magnetic field / according m/z ratio				the [1]
	(d)	1s	2s	2р	3s	Зр	
		↓↑	↓↑	↓↑ ↓↑ ↓↑			
							[1]
	(e)	(i)	$Mg_{3}N_{2} + 6H_{2}$	₂ 0 3	Mg(OH) ₂ +	2 NH ₃	[1]
	(ii) moles Mg(OH) ₂ = 1.75/58.32 = 0.0300 (1)						
			moles $Mg_3N_2 = 0.0100$ (1)				
			mass Mg_3N_2	= 0.01 x 100.9 = 1	.01 g (1)		[3]

- must be 3 significant figures to gain third mark

Total [14]

© WJEC CBAC Ltd.

(a)

(b)

(c)

(d)

(e)

(f)

PMT

Diatt	ing	(2)	
PIOU	ing	(2)	
Best	fit line	(1)	[3]
(i)	С	(1)	
	Curve steeper	(1)	[2]
(ii)	Concentration of acid is greatest		[1]
44 c	m ³ (±1 cm ³)		[1]
Mole	es Mg = 0.101/24.3 = 0.00416	(1)	
Mole	es HCl = 2 x 0.02 = 0.04	(1)	[2]
(i)	Mg is not the limiting factor /		
	Mg now in excess / HCl not in excess		[1]
(ii)	Moles acid = 0.5 x 0.04 = 0.02	(1)	
	Volume H_2 = 0.01 x 24 = 0.24 dm ³		
	- correct unit needed	(1)	[2]
Low	er the temperature of the acid	(1)	
Rea	ctants collide with less energy	(1)	

Fewer molecules that have the required activation energy (1)[3]

or Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter. [1]

Total [16]

PMT

(a)	Oil is	non-renewable / will run out (1)				
	Contr	ibution of CO ₂ to global warming (1)				
	Oil ha	as other important uses (1)	[2]			
	(Maxi	mum 2 marks)				
(b)	(i)	Power stations / fossil fuels used to generate the electricity needed to make $H_2^{}(1)$				
		Resulting in CO ₂ formation (global warming) / acid ra	in (1)			
		Manufacture of car produces pollution (1)	[2]			
		(Maximum 2 marks)				
		QWC Legibility of text; accuracy of spelling, punctua and grammar, clarity of meaning	tion [1]			
	(ii)	Disagree, no fuel is 100% safe /				
		petrol can burn explosively (Accept agree if valid reason given e.g. in terms of liv	es			
		being lost)	[1]			
(c)	(i)	Hydrogen since frequency is inversely proportional to wavelength / smaller wavelength) [1]			
	(ii)	Hydrogen since energy is proportional to frequency / greater frequency / E = hf	[1]			
(d)	In Ne greater shielding of <i>outer</i> electron (1) outweighs larger nuclear charge (1) / He has greater effective nuclear charge (1) / He outer electron closer to nucleus (1)					
		- max 1 if no reference to <i>outer</i> electron	[2]			
	(Maxi	mum 2 marks)				
(e)	(i)	²¹⁸ Po	[1]			
	(ii)	Since radon is a gas / inhaled, α particles will be give in the lungs (which may cause cancer)	n off [1]			

Total [12]

PMT

(a) Low temperature (1)As temperature is decreased equilibrium moves in exothermic direction. (1)High pressure (1)As pressure is increased equilibrium moves towards side with smaller number of gas moles (1)[4] QWCThe information is organised clearly and coherently, using specialist vocabulary where appropriate [1] (1)(b) Δ Hreaction = Δ H_f products – Δ H_f reactants $-46 = \Delta H_{f}$ ethanol – (52.3 – 242) ΔH_{f} ethanol = -46 – 189.7 (1) ΔH_{f} ethanol = -235.7 kJ mol⁻¹ (1) [3] Bonds broken = 1648 + 612 + 926 = 3186 kJ mol⁻¹ (c) (1)Bonds formed = $2060 + 348 + 360 + 463 = 3231 \text{ kJ mol}^{-1}(1)$ Δ H reaction = 3186 – 3231 = -45 kJ mol⁻¹ (1)[3] (d) (i) Average bond enthalpies used (not actual ones) [1] Yes, since answers are close to each other (ii) [1] Catalyst is in different (physical) state to reactants (e) [1] (f) (i) exothermic reaction [1] (ii) catalysed reaction [1] Energy

Extent of reaction

Total [16]

(a)

(b)

(c)

PMT

Weighing bottle would not have been washed / difficult to dissolve solid in volumetric flask / final volume would not	
necessarily be 250 cm ³	[1]
Pipette	[1]
To show the end point / when to stop adding acid / when it's neutralised	[1]

(d)	So that a certain volume of acid can be added quickly before			
	adding drop by drop / to save time before doing accurate			
	titrations / to give a rough idea of the end point	[1]		

- To obtain a more reliable value [1] (e)
- Moles = 0.730/36.5 = 0.0200 (1) (f) (i)
 - Concentration = $0.02/0.1 = 0.200 \text{ mol dm}^{-3}$ (1) [2]
 - (ii) Moles = 0.2 x 0.0238 = 0.00476 [1]
 - (iii) 0.00476 [1]
 - (iv) $0.00476 \times 10 = 0.0476$ [1]
 - (v) $M_r = 1.14/0.0476 = 23.95$ [1]
 - (vi) Lithium [1] - mark consequentially throughout (f)

Total [12]

Section B Total [70]