~	uestion Scheme			Marks		
1.	<i>(a)</i>	Label members $1 \rightarrow 240$		B1		
		Use random numbers to select first from 1 – 8		B1		
		Select every 8 th member (e.g. 6,14, 22,)		B1		(3)
	<i>(b)</i>	e.g.: More convenient, efficient, faster etc. Any 1		B1		(1)
					(4 marks	
2.	(<i>a</i>)	$\overline{P} \sim N\left(110, \frac{8^2}{16}\right)$ ie : $\overline{P} \sim N\left(110, 2^2\right)$	Normal	B1		
			$110, 2^2$	B1		(2)
	(<i>b</i>)	$P(110 < \overline{P} < 113) = P\left(0 < Z < \frac{113 - 110}{2}\right)$	Standardising	M1		
		= P (0 < Z < 1.5)		A1 f	Ìt	
		= 0.4332	AWRT 0.433	A1		(3)
					(5 m	arks)
3.	(a)	Let T represent total time				
		$\therefore E(T) = 225 + 165 + 185 = 575$	575	B1		
		Var (T) = $38^2 + 23^2 + 27^2 = 2702$	2702	B1		
		$\therefore P (533 < T < 655) = P (-0.81 < Z < 1.54)$	Standardising	M1	A1	
			Standardising	ft		
		= 0.7292	AWRT 0.729	A1		(5)
	(b)	Let <i>D</i> represent the difference in times for tasks <i>B</i> and <i>C</i> (i.e. $B - C$)			
		$\therefore E(D) = 165 - 185 = -20$		B1		
		$Var(D) = 23^2 + 27^2 = 1258$		B1		
		$\therefore P(D > 0) = P\left(Z > \frac{0 - (-20)}{\sqrt{1258}}\right)$	Standardising	M1	A1	
		$P(D > 0) = P\left(2 > \frac{1}{\sqrt{1258}}\right)$	$-20, \sqrt{1258}$	ft		
		= P(Z > 0.56)				
		= 0.2877	AWRT 0.288	A1		(5)
				((10 m	arks)

Question Number		Scheme	Marks	
4.	<i>(a)</i>	Attendance ranks 2, 1, 8, 5, 3, 6, 7, 4	B1	
		$\sum d^2 = 48$ Attempt to find $\sum d^2$	M1 A1	
		$\sum d^{2} = 48$ $r_{s} = 1 - \frac{6 \times 48}{8 \times 63}$ Substitution of their $\sum d^{2}$	M1	
		= 0.4286 awrt 0.429	A1 ft	(5)
	(<i>b</i>)	$H_o: \rho = 0; H_1: \rho \neq 0.$ both	B1	
		With <i>n</i> =8, critical value is 0.7381 0.7381	B1	
		Correct comparison	M1	
		Conclusion	A1 ft	(4)
	(c)	Share ranks evenly.	B1	
		B1	(2)	
			(11 marks)	
5.	(<i>a</i>)	$P(X = x) = \frac{1}{6}; x = 1, 2,, 6.$	B1 B1	(2)
	<i>(b)</i>	Discrete uniform distribution	B1	(1)
	(<i>c</i>)	H_o : Discrete uniform distribution is a suitable model	B1	
		H_1 : Discrete uniform distribution is <u>not</u> a suitable model	B1	
		$\alpha = 0.05 v = 5;$ CR: $\chi^2 > 11.070$	B1 B1	
		$\alpha = 0.05 v = 5;$ CR: $\chi^2 > 11.070$ $\sum \frac{(O - E)^2}{E} = \frac{1}{50} \{9^2 + 1^2 + 2^2 + 8^2 + 13^2 + 13^2\}$ All E's=50	B1	
		$=\frac{448}{50}=\underline{9.76}$ $\sum \frac{(O-E)^2}{E}$	M1 A1	
		Since 9.76 is not in the critical region there is no evidence to reject H_0 and thus	A1 ft	(8)
		the data is compatible with the assumption.	(11 mar	:ks)

Question Number	Scheme	Marks	
6. (a)	$\mathbf{H}_{o}: \boldsymbol{\mu}_{L} = \boldsymbol{\mu}_{H}; \mathbf{H}_{1}: \boldsymbol{\mu}_{L} \neq \boldsymbol{\mu}_{H}$	B1 B1	
	$8.13^2 6.69^2$ Substitute into s.e.	M1	
	s.e. = $\sqrt{\frac{8.13^2}{400} + \frac{6.69^2}{300}}$ Substitute into s.e. Complete correct expression	A1	
	= 0.5607 AWRT 0.561	A1	
	$\alpha = 0.05 \Rightarrow \text{C.R:} \ z < -1.96 \text{ or } z > 1.96 \qquad \pm 1.96$	B1	
	Test statistic: $z = \frac{6.40 - 7.42}{0.5607} = -\underline{1.819}$ $(\overline{x}_{\rm L} - \overline{x}_{\rm H})$ their s.e.	M1	
	AWRT ±1.82	A1	
	Since -1.819 is not in the critical region then there is no evidence to reject H ₀ and thus it can be concluded that there is no difference in mean expenditure on tobacco.		
(b)	(b) C. L. Theorem enables use of $\overline{L} \sim Normal and \overline{H} \sim Normal$. $\overline{L} \text{ or } \overline{H}$		
	Normal	B1 (2)	
		(11 marks)	

Question Number		Sc	cheme			Mark	S
7.	Observed Frequencies						
		Pass	Fail	Total			
	Male	23	27	50			
	Female	32	18	50			
	Total	55	45	100			
		Expe	cted Frequ	encies			
		Pass	Fail	Total	Use of $\frac{R_T \times C_T}{100}$	M1	
	Male	27.5	22.5	50	27.5	A1	
	Female	27.5	22.5	50	22.5	A1	
	Total	55	45	100			
	H_o : No association between gender and test result					B1	
	H_1 : Association between gender and test result					B1	
	$\sum \frac{(O-E)^2}{E} = \frac{(23-27.5)^2}{27.5} + \dots \frac{(18-22.5)^2}{22.5}$ Use of $\sum \frac{(O-E)^2}{E}$					M1 A1	
	= 3.27					A1	
	$\alpha = 0.10 \Longrightarrow \chi^2 > 2.705$				v = 1	B1	
	Since 3.27 is in the critical region there is evidence of association 2.705 between gender and test result.					B1	
	-					A1 ft	(11)
						(11 m	arks)

Question Number		Scheme		Marks	
8.	(<i>a</i>)	$\overline{x} = \hat{\mu} = \frac{85.2}{12} = \underline{7.10}$		M1A1	
		$s^{2} = \frac{1}{11} \left\{ 906.18 - \frac{(85.2)^{2}}{12} \right\}$	Substitution in correct formula	M1	
			Complete correct expression	A1 ft	
		= 27.3873	AWRT 27.4	A1	(5)
	(<i>b</i>)	Confidence interval is given by	$\overline{x} \pm z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$	M1	
		$7.10 \pm 1.6449 \times \frac{5.1}{\sqrt{12}}$	Correct expression with their values	A1 ft	
			1.6449	B1	
		ie:- (4.6783, 9.5216)	AWRT (4.68, 9.52)	A1 A1	(5)
	(<i>c</i>)	The value 4 is not in the interval;		B1	
		Thus the claim is not substantiated.		B1	(2)
				(12 marks)	